Advanced Search
Volume 39 Issue 8
Aug.  2017
Turn off MathJax
Article Contents
ZHOU Mu, TANG Yunxia, TIAN Zengshan, WEI Yacong. WLAN Indoor Localization Algorithm Based on Manifold Interpolation Database Construction[J]. Journal of Electronics & Information Technology, 2017, 39(8): 1826-1834. doi: 10.11999/JEIT161269
Citation: ZHOU Mu, TANG Yunxia, TIAN Zengshan, WEI Yacong. WLAN Indoor Localization Algorithm Based on Manifold Interpolation Database Construction[J]. Journal of Electronics & Information Technology, 2017, 39(8): 1826-1834. doi: 10.11999/JEIT161269

WLAN Indoor Localization Algorithm Based on Manifold Interpolation Database Construction

doi: 10.11999/JEIT161269
Funds:

The National Natural Science Foundation of China (61301126), The Program for Changjiang Scholars and Innovative Research Team in University (IRT1299), The Special Fund of Chongqing Key Laboratory (CSTC), Young Scientific Research Program of CUPT (A2013-31)

  • Received Date: 2016-11-24
  • Rev Recd Date: 2017-03-20
  • Publish Date: 2017-08-19
  • To deal with the high cost involved in the location fingerprint database construction due to the dense Reference Points (RPs) distribution and point-by-point Received Signal Strength (RSS) collection in the conventional Wireless Local Area Network (WLAN) indoor localization systems, a new database construction approach based on the integrated semi-supervised manifold learning and cubic spline interpolation is proposed. The proposed approach utilizes a small amount of labeled data and a massive amount of unlabeled data to find the optimal solution to localization target function, and meanwhile relies on the mapping relations between the high-dimensional signal strength space and low-dimensional physical location space to calibrate the unlabeled data with location coordinates. The extensive experiments demonstrate that the proposed approach is able to guarantee the high localization accuracy, as well as significantly reduce the cost involved in location fingerprint database construction.
  • loading
  • KASHIF A, TAYYAB J, HOSSAM S H, et al. Non-audible acoustic communication and its application in indoor location-based services[C]. IEEE Wireless Communications and Networking Conference, Doha, Qatar, 2016: 1-6.
    周牧, 蒲巧林, 田增山. 室内WLAN定位中位置指纹优化的接入点部署方法[J]. 通信学报, 2015, 36(Z1): 30-41. doi: 10.11959/j.issn.1000-436x.2015279.
    ZHOU Mu, PU Qiaolin, and TIAN Zengshan. Location fingerprint optimization based access point deployment in indoor WLAN localization[J]. Journal on Communications, 2015, 36(Z1): 30-41. doi: 10.11959/j.issn.1000-436x.2015279.
    陈兵, 杨小玲. 一种基于概率密度的WLAN接入点定位的算法[J]. 电子与信息学报, 2015, 37(4): 855-862. doi: 10.11999/ JEIT140661.
    CHEN Bing and YANG Xiaoling. A WLAN access point localization algorithm based on probability density[J]. Journal of Electronics Information Technology, 2015, 37(4): 855-862. doi: 10.11999/JEIT140661.
    HE Jie, LI Shen, PAHLAVAN Kaveh, et al. A realtime testbed for performance evaluation of indoor TOA location system[C]. IEEE International Conference on Communications, Ottawa, Canada, 2012: 482-486.
    TAPONECCO L, AMICO A D, and MENGALI U. Joint TOA and AOA estimation for UWB localization applications [J]. IEEE Transactions on Wireless Communications, 2011, 10(7): 2207-2217. doi: 10.1109/TWC.2011.042211.100966.
    ZHANG Liye, MA Lin, and XU Yubin. A semi-supervised indoor localization method based on l1-graph algorithm[J]. Journal of Harbin Institute of Technology (New Series), 2015, 22(4): 55-61.
    OUYANG R, WONG A, LEA C, et al. Indoor location estimation with reduced calibration exploiting unlabeled data via hybrid generative/discriminative learning[J]. IEEE Transactions on Mobile Computing, 2011, 11(11): 1613-1626. doi: 10.1109/TMC.2011.193.
    PAN J J, PAN S J, YIN J, et al. Tracking mobile users in wireless networks via semi-supervised colocalization[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(3): 587-600. doi: 10.1109/TPAMI.2011.165.
    励晶晶, 郭文. 两类错误条件下的样本容量选择[J]. 统计与决策, 2010, (15): 14-18.
    LI Jingjing and GUO Wen. Select the sample size under two types of error conditions[J]. Statistics and Decision, 2010, (15): 14-18.
    贾俊平. 统计学[M]. 北京. 中国人民大学出版社. 2011: 220-224.
    JIA Junping. Statistics[M]. Beijing, China Renmin University Press, 2011: 220-224.
    彭小辉, 晏政, 李艳军, 等. 一种基于解析冗余关系的半定性故障隔离方法在航天器推进系统中的应用[J]. 国防科技大学学报. 2012, 34(6): 104-110. doi: 10.3969/j.issn.1001-2486. 2012.06.018.
    PENG Xiaohui, YAN Zheng, LI Yanjun, et al. A semi- qualitative fault isolation method based on analytical redundancy relations for spacecraft propulsion system[J]. Journal of National University of Defense Technology, 2012, 34(6): 104-110. doi: 10.3969/j.issn.1001-2486.2012.06.018.
    陈家琪, 严梓乘. 一种Newton插值的RFID室内定位改进算法[J]. 计算机系统应用, 2012, (1): 45-48. doi: 10.3969/j.issn. 1003-3254.2012.01.010.
    CHEN Jiaqi and YAN Zicheng. Improvement algorithm of Newton interpolation for RFID indoor positioning[J]. Computer Systems Applications, 2012, (1): 45-48. doi: 10. 3969/j.issn.1003-3254.2012.01.010.
    BELKIN M and NIYOGI P. Laplacian eigenmaps for dimensionality reduction and data representation[J]. Neural Computation, 2003, 15(6): 1373-1396. doi: 10.1162/ 089976603321780317.
    SHI Lei, ZHANG Lefei, ZHAO Lingli, et al. Adaptive Laplacian eigenmap-based dimension reduction for ocean target discrimination[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(7): 902-906. doi: 10.1109/LGRS. 2016.2553046.
    ZHANG Yanming, HUANG Kaizhu, HOU Xinwen, et al. Learning locality preserving graph from data[J]. IEEE Transactions on Cybernetics, 2014, 44(11): 2088-2098. doi: 10.1109/TCYB.2014.2300489.
    曾孝平, 刘刈, 刘国金. 基于图谱理论和随机游走核的图像去噪[J]. 通信学报. 2010, 31(7): 116-121. doi: 10.3969/j.issn. 1000-436X.2010.07.017.
    ZENG Xiaoping, LIU Yi, and LIU Guojin. Image denoising based on spectral graph theory and random walk kernel[J]. Journal on Communications, 2010, 31(7): 116-121. doi: 10.3969/j.issn.1000-436X. 2010. 07.017.
    金珠. 改进的支持向量机分类算法及其在煤矿人因事故安全评价中的应用[D]. [博士论文], 中国矿业大学, 2011, 81-89.
    JIN Zhu. Improved support vector machine classification algorithm and application for human factors of coal mine accidents safety evaluation[D]. [Ph.D. dissertation], China University of Mining, 2011, 81-89.
    RENAN S, PASCAL D C, RICHARD P, et al. Human step detection from a piezoelectric polymer floor sensor using normalization algorithms[C]. IEEE Sensors 2014, Valencia, Spain, 2014: 1169-1172.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1511) PDF downloads(393) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return