Advanced Search
Volume 39 Issue 8
Aug.  2017
Turn off MathJax
Article Contents
LI Bin, LI Hui, GUO Songyun. Using t-distribution Based Probabilistic Principal Component Analysis Model for High Resolution Range Profile Recognition[J]. Journal of Electronics & Information Technology, 2017, 39(8): 1857-1864. doi: 10.11999/JEIT161220
Citation: LI Bin, LI Hui, GUO Songyun. Using t-distribution Based Probabilistic Principal Component Analysis Model for High Resolution Range Profile Recognition[J]. Journal of Electronics & Information Technology, 2017, 39(8): 1857-1864. doi: 10.11999/JEIT161220

Using t-distribution Based Probabilistic Principal Component Analysis Model for High Resolution Range Profile Recognition

doi: 10.11999/JEIT161220
Funds:

The National Natural Science Foundation of China (61571364), The Seed Foundation of Innovation and Creation for Graduate Students in Northwestern Poly-technical University (Z2017022)

  • Received Date: 2016-11-10
  • Rev Recd Date: 2017-04-06
  • Publish Date: 2017-08-19
  • In order to improve the sensitivity problem of using Probabilistic Principal Component Analysis (PPCA) model for HRRP recognition, a modified method is proposed. T-distribution is adopted as the basis of PPCA model rather than Gaussian distribution in this method, which utilizes not only the t-distributions robustness, but also less free parameters of PPCA characteristic. Further, to eliminate the targets azimuth sensitivity, the mixture t-distribution is substituted for single t-distribution. This modification offers a potential to model the similar density of HRRP in different azimuth range adequately for clustering and reduces the mismatch between models, thus improves the recognition performance. Estimation of parameters is achieved by EM algorithm to avoid the drawbacks of maximum-likelihood estimation and improve the estimation efficiency. Finally, in the simulation experiment Bayesian rule and the estimation statistical features are adopted together to test new HRRPs, the results show this method can improve the robustness of PPCA model in low SNR conditions.
  • loading
  • LIU Hongwei, CHEN Bo, FENG B, et al. Radar high- resolution range profiles target recognition based on stable dictionary learning[J]. IET Radar, Sonar Navigation, 2016, 10(2): 228-237. doi: 10.1049/iet-rsn.2015.0007.
    ZHOU Daiying. Radar target HRRP recognition based on reconstructive and discriminative dictionary learning[J]. Signal Processing, 2016, 126: 52-64. doi: 10.1016/j.sigpro. 2015.12.006.
    PAN Xiaoyi, WANG Wei, FENG D, et al. Signature extraction from rotating targets based on a fraction of HRRPs[J]. IEEE Transactions on Antennas and Propagation, 2015, 63(2): 585-592. doi: 10.1109/TAP.2014.2379955.
    PAN Mian, JIANG Jie, LI Zhu, et al. Radar HRRP recognition based on discriminant deep auto-encoders with small training data size[J]. Electronics Letters, 2016, 52(20): 1725-1727. doi: 10.1049/el.2016.3060.
    DU L, HE H, ZHAO L, et al. Noise robust radar HRRP target recognition based on scatter matching algorithm[J]. IEEE Sensors Journal, 2016, 16(6): 1743-1753. doi: 10.1109/JSEN. 2015.2501850.
    LUNDAN J and KOIVUNEN V. Deep learning for HRRP- based target recognition in multi-static radar systems[C]. IEEE Radar Conference, Philadelphia, PA, 2016. doi: 10.1109 /RADAR.2016.7485271.
    JACOB S P and OSULLIVAN J A. Automatic target recognition using sequences of high resolution radar range- profiles[J]. IEEE Transactions on Aerospace and Electronic Systems, 2000, 36(2): 364-381. doi: 10.1109/7.845214.
    WEBB A R. Gamma mixture models for target recognition[J]. Pattern Recognition, 2000, 33(12): 2045-2054. doi: 10.1016/ S0031-3203(99)00195-8.
    COPSEY K D and WEBB A R. Bayesian gamma mixture model approach to radar target recognition[J]. IEEE Transactions on Aerospace and Electronic Systems, 2003, 39(4): 1201-1217. doi: 10.1109/TAES.2003.1261122.
    DU L, LIU H, BAO Z, et al. A two-distribution compounded statistical model for Radar HRRP target recognition[J]. IEEE Transactions on Signal Processing, 2006, 54(6): 2226-2238. doi: 10.1109/TSP.2006.873534.
    WANG Caiyun and XIE Jiling. Radar high resolution range profile target recognition based on t-mixture model[C]. IEEE Radar Conference, Kansas, 2011: 762-767. doi: 10.1109/ RADAR.2011.5960640.
    DU L, LIU H, BAO Z, et al. Radar HRRP statistical recognition: Parametric model and model selection[J]. IEEE Transactions on Signal Processing, 2008, 56(5): 1931-1944. doi: 10.1109/TSP.2007.912283.
    LIU Hongwei, DU Lan, WANG Penghui, et al. Radar HRRP automatic target recognition: Algorithms and applications[C]. Proceedings of IEEE CIE International Conference on Radar, Chengdu, 2011: 14-17. doi: 10.1109/CIE-Radar.2011. 6159709.
    王鹏辉, 杜兰, 刘宏伟, 等. 雷达高分辨距离像分帧新方法[J].西安电子科技大学学报, 2011, 38(6): 22-29. doi: 10.3969 /j.issn.1001-2400.2011.06.004.
    WANG P H, DU L, LIU H W, et al. New frame segmentation method for radar HRRPs[J]. Journal of Xidian University, 2011, 38(6): 22-29. doi: 10.3969/j.issn.1001-2400.2011.06. 004.
    王鹏辉, 杜兰, 刘宏伟. 基于复高斯模型的雷达高分辨距离像目标识别新方法[J]. 光学学报, 2014, 34(2): 1-10. doi: 10.3788 /AOS201434.0228004.
    WANG P H, DU L, and LIU H W. A new method based on complex Gaussian models for radar high resolution range profile target recognition[J]. Acta Optica Sinica, 2014, 34(2): 1-10. doi: 10.3788/AOS201434.0228004.
    CHEN T, MARTIN E B, MONTAGUE G A, et al. Robust probabilistic PCA with missing data and contribution analysis for outlier detection[J]. Computational Statistics Data Analysis, 2009, 53(10): 3706-3716. doi: 10.1016/j.csda. 2009.03.014.
    LANGE K L, LITTLE R J, TAYLOR J M, et al. Robust statistical modeling using the t distribution[J]. Journal of the American Statistical Association, 2012, 84(408): 881-896. doi: 10.1080/01621459.1989.10478852.
    TIPPING M E and BISHOP C M. Probabilistic principal component analysis[J]. Journal of The Royal Statistical Society Series B Statistical Methodology, 1999, 61(3): 611-622. doi: 10.1111/1467-9868.00196.
    ZHOU X and LIU X. The EM algorithm for the extended finite mixture of the factor analyzers model[J]. Computational Statistics Data Analysis, 2008, 52(8): 3939-3953. doi: 10.1016/j.csda.2008.01.023.
    PEEL D and MCLACHLAN G J. Robust mixture modelling using the t distribution[J]. Statistics and Computing, 2000, 10(4): 339-348. doi: 10.1023/A:1008981510081.
    TIPPING M E and BISHOP C M. Mixtures of probabilistic principal component analyzers[J]. Neural Computation, 1999, 11(2): 443-482. doi: 10.1162/089976699300016728.
    ZHU D, LIU Y, HUO K, et al. A novel high-precision phase- derived-range method for direct sampling LFM radar[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(2): 1131-1141. doi: 10.1109/TGRS.2015.2474144.
    但波, 姜永华, 李敬军, 等. 雷达高分辨距离像自适应角域划分方法[J]. 系统工程与电子技术, 2014, 36(11): 2178-2185. doi: 10.3969/j.issn.1001-506X.2014.11.11.
    DAN B, JIANG Y H, LI J J, et al. Adaptive angular-sector segmentation method for radar HRRP[J]. Systems Engineering and Electronics, 2014, 36(11): 2178-2185. doi: 10.3969/j.issn.1001-506X.2014.11.11.
    黄得双. 高分辨雷达智能信号处理技术[M]. 北京: 机械工业出版社, 2001: 19-31.
    HUANG D S. Intelligent Signal Processing Technique for High Resolution Radars[M]. Beijing: China Machine Press, 2001: 19-31.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1285) PDF downloads(270) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return