Advanced Search
Volume 39 Issue 8
Aug.  2017
Turn off MathJax
Article Contents
XIAO Bin, JIANG Yanjun, LI Weisheng, WANG Guoyin. Multi-focus Image Fusion Based on Discrete Tchebichef Transform[J]. Journal of Electronics & Information Technology, 2017, 39(8): 1927-1933. doi: 10.11999/JEIT161217
Citation: XIAO Bin, JIANG Yanjun, LI Weisheng, WANG Guoyin. Multi-focus Image Fusion Based on Discrete Tchebichef Transform[J]. Journal of Electronics & Information Technology, 2017, 39(8): 1927-1933. doi: 10.11999/JEIT161217

Multi-focus Image Fusion Based on Discrete Tchebichef Transform

doi: 10.11999/JEIT161217
Funds:

The National Natural Science Foundation of China (61572092), The National Natural Science Foundation of China-The Mutual fund of Guangdong Province (U1401252)

  • Received Date: 2016-11-10
  • Rev Recd Date: 2017-03-01
  • Publish Date: 2017-08-19
  • Image fusion based on image transform technologies is always used in multi-focus image fusion. It transforms images into transform domain and fuses the transformed image according to a specific fusion rule. After that, the fused image is achieved by the inverse image transform. The transform based image fusion methods are robust to noise and the fused results are widely accepted. This paper proposes a multi-focus image fusion method based on discrete Tchebichef orthogonal polynomial transform. Discrete orthogonal polynomial transform is firstly introduced to the field of multi-focus image fusion. The proposed method combines the spatial frequency with the discrete orthogonal polynomial transform coefficients of image, and it directly achieves the value of spatial frequency by the discrete orthogonal polynomial transform coefficients of the image and avoids the process of recalculation that transforms the discrete orthogonal polynomial transform coefficients to space domain. The proposed method can reduce the fusing time in multi-focus image fusion and improves the fusion effect.
  • loading
  • GUO D, YAN J, and QU X. High quality multi-focus image fusion using self-similarity and depth information[J]. Optics Communications, 2015, 338: 138-144.
    LI T and WANG Y. Biological image fusion using a NSCT based variable-weight method[J]. Information Fusion, 2011, 12(2): 85-92.
    Thomas C, Ranchin T, Wald L, et al. Synthesis of Multispectral images to high spatial resolution: A critical review of fusion methods based on remote sensing physics[J]. IEEE Transactions on Geoscience Remote Sensing, 2008, 46(5): 1301-1312.
    GARG R, GUPTA P, and KAUR H. Survey on multi-focus image fusion algorithms[C]. IEEE Engineering and Computational Sciences, Chengdu, China, 2014: 1-5.
    WEI Chunyu, ZHOU Bingyin, and GUO Wei. Novel fusion rules for transform-domain image fusion methods[C]. International Conference on Mechatronics and Industrial Informatics, Paris, France, 2015: 846-850. doi: 10.2991/ icmii-15.2015.147.
    LIU Yu, LIU Shuping, and WANG Zengfu. Multi-focus image fusion with dense SIFT[J]. Information Fusion, 2015, 23: 139-155. doi: 10.1016/j.inffus.2014.05.004.
    WANG Zhaobin, MA Yide, and GU Jason. Multi-focus image fusion using PCNN[J]. Pattern Recognition, 2010, 43(6): 2003-2016. doi: 10.1016/j.patcog.2010.01.011.
    TANG J. A contrast based image fusion technique in the DCT domain[J]. Digital Signal Processing, 2004, 14(3): 218-226. doi: 10.1016/j.dsp.2003.06.001.
    陆刚, 肖斌, 王国胤. 基于离散Tchebichef矩和软决策化的图像压缩[J]. 计算机科学, 2016, 43(11): 304-308.
    LU Gang, XIAO Bin, and WANG Guoyin. Image compression based on discrete Tchebichef and soft decision[J]. Computer Science, 2016, 43(11): 304-308.
    LI Shutao and YANG Bin. Multifocus image fusion using region segmentation and spatial frequency[J]. Image Vision Computing, 2008, 26(7): 971-979. doi: 10.1016/j.imavis.2007. 10.012.
    QU Xiaobo, YAN Jingwen, and XIAO Hongzhi. Image fusion algotithm based on spatial frequency-motivatie pulse coupled neural networks in nonsubsampled contourlet transform domain[J]. Acta Automatica Sinica, 2008, 34(12): 1508-1514.
    PHAMILA Y A V and AMUTHA R. Discrete cosine transform based fusion of multi-focus images for visual sensor networks[J]. Signal Processing, 2014, 95(2): 161-170. doi: 10.1016/j.sigpro.2013.09.001.
    LI Shutao, KWOK J T, and WANG Y. Combination of images with diverse focuses using the spatial frequency[J]. Information Fusion, 2001, 2(3): 169-176. doi: 10.1016/S1566- 2535(01)00038-0.
    邓艾, 吴谨, 杨莘, 等. 基于二代Curvelet变换和区域匹配度的图像融合算法[J]. 计算机科学, 2012, 39(S1): 513-514.
    DENG Ai, WU Jin, YANG Hua, et al. Image fusion based on second generation Curvelet and regional compatibility[J]. Computer Science, 2012, 39(S1): 513-514.
    XU Shaofan, LIU Xianfeng, and DI Hongwei. An image fusion quality assessment based on structural similarity[J]. Journal of Jinan University, 2007, 28(5): 470-473.
    PIELLA G and HEIJMANS H. A new quality metric for image fusion[C]. Proceedings of the IEEE International Conference on Image Processing, Chongqing, China, 2003, 2: III-173-6.
    WANG Z and ALAN C Bovik. Reduced- and no-reference image quality assessment[J]. IEEE Signal Processing Magazine, 2011, 28(6): 29-40.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1250) PDF downloads(372) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return