Advanced Search
Volume 39 Issue 8
Aug.  2017
Turn off MathJax
Article Contents
SUN Shijie, ZHAO Huaici, LI Bo, HAO Mingguo, Lü Jinfeng. Blind Deconvolution for Noisy and Blurry Images Using Low Rank Prior[J]. Journal of Electronics & Information Technology, 2017, 39(8): 1919-1926. doi: 10.11999/JEIT161206
Citation: SUN Shijie, ZHAO Huaici, LI Bo, HAO Mingguo, Lü Jinfeng. Blind Deconvolution for Noisy and Blurry Images Using Low Rank Prior[J]. Journal of Electronics & Information Technology, 2017, 39(8): 1919-1926. doi: 10.11999/JEIT161206

Blind Deconvolution for Noisy and Blurry Images Using Low Rank Prior

doi: 10.11999/JEIT161206
Funds:

The Scientific Research Project of the Education Department of Liaoning Province (L2015368)

  • Received Date: 2016-11-08
  • Rev Recd Date: 2017-04-01
  • Publish Date: 2017-08-19
  • The purpose of single image blind deconvolution is to estimate the unknown blur kernel from a single observed blurred image and recover the original sharp image. Such a task is severely ill-posed and even more challenging especially in the condition that the noise in the input image can not be negligible. In this paper, the main problem this study focuses on is how to effectively apply low rank prior to blind deconvolution. A single noisy and blurry image blind deconvolution algorithm is proposed, using alternating Maximum A Posteriori (MAP) estimation combined with low rank prior. First, when estimating the intermediate latent image, low rank prior is used as the constraint that is used for noise suppression of the restored image. Then the denoised intermediate latent image in turn leads to higher quality blur kernel estimation. These two operations are iterated in this manner to arrive at reliable blur kernel estimation. Finally, the non-blind deconvolution method is chosen to be used with sparse prior knowledge to achieve the final latent image restoration. Extensive experiments manifest the superiority of the proposed method over state-of-the-art techniques, both qualitatively and quantitatively.
  • loading
  • LEVIN A, WEISS Y, DURAND F, et al. Efficient marginal likelihood optimization in blind deconvolution[C]. IEEE Conference on Computer Vision and Pattern Recognition, Providence, RI, USA, 2011: 2657-2664. doi: 10.1109/CVPR. 2011.5995308.
    KRISHNAN D, TAY T, and FERGUS R. Blind deconvolution using a normalized sparsity measure[C]. IEEE Conference on Computer Vision and Pattern Recognition, Providence, RI, USA, 2011: 233-240. doi: 10.1109/CVPR. 2011.5995308.
    SUN L, Cho S, Wang J, et al. Edge-based blur kernel estimation using patch priors[C]. IEEE Conference on Computational Photography, Cambridge, MA, USA, 2013: 1-8, 19-21. doi: 10.1109/ICCPhot.2013.6528301.
    LAI W S, DING J J, LIN Y Y, et al. Blur kernel estimation using normalized color-line priors[C]. IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 2015: 64-72. doi: 10.1109/CVPR.2015.7298601.
    REN W, CAO X, PAN J, et al. Image deblurring via enhanced low-rank prior[J]. IEEE Transactions on Image Processing, 2016, 25(7): 3426-3437. doi: 10.1109/TIP.2016. 2571062.
    CHO S and LEE S. Fast motion deblurring[J]. ACM Transactions on Graphics, 2009, 28(5): 89-97. doi: 10.1145/ 1618452.1618491.
    XU L and JIA J Y. Two-phase kernel estimation for robust motion deblurring[C]. European Conference on Computer Vision, Crete, Greece, 2010: 157-170. doi: 10.1007/978-3-642- 15549-9_12.
    PAN J, LIU R, SU Z, et al. Kernel estimation from salient structure for robust motion deblurring[J]. Signal Processing: Image Commmunication, 2013, 28(9): 1156-1170. doi: 10. 1016/j.image.2013.05.001.
    PAN J, HU Z, SU Z, et al. L0-regularized intensity and gradient prior for text images deblurring and beyond[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 39(2): 342-355. doi: 10.1109/TPAMI.2016. 2551244.
    PAN J, SUN D, PFISTER H, et al. Blind image deblurring using dark channel prior[C]. IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, Nevada, USA, 2016: 1628-1636. doi: 10.1109/CVPR.2016.180.
    MAI L and LIU F. Kernel fusion for better image deblurring[C]. IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 2015: 371-380. doi: 10.1109/CVPR.2015.7298634.
    YAN R M and SHAO L. Blind image blur estimation via deep learning[J]. IEEE Transactions on Image Processing, 2016, 25(4): 1910-1921. doi: 10.1109/TIP.2016.2535273.
    TAI Y and LIN S. Motion-aware noise filtering for deblurring of noisy and blurry images[C]. IEEE Conference on Computer Vision and Pattern Recognition, Rhode Island, USA, 2012: 17-24. doi: 10.1109/CVPR.2012.6247653.
    ZHONG L, CHO S, METAXAS D, et al. Handling noise in single image deblurring using directional filters[C]. IEEE Conference on Computer Vision and Pattern Recognition, Portland, Oregon, USA, 2013: 612-619. doi: 10.1109/CVPR. 2013.85.
    WHYTE O, SIVIC J, ZISSERMAN A, et al. Non-uniform deblurring for shaken images[C]. IEEE Conference on Computer Vision and Pattern Recognition, San Francisco, CA, USA, 2010: 491-498. doi: 10.1109/CVPR.2010.5540175.
    GU S, ZHANG L, ZUO W, et al. Weighted nuclear norm minimization with application to image denoising[C]. IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 2014: 2862-2869. doi: 10.1109/CVPR. 2014.366.
    DONG W S, SHI G M, and LI X. Nonlocal image restoration with bilateral variance estimation: A low-rank approach[J]. IEEE Transactions on Image Processing, 2013, 22(2): 700-711. doi: 10.1109/TIP.2012.2221729.
    CAI J F, CAND?S E J, and SHEN Z. A singular value thresholding algorithm for matrix completion[J]. SIAM Journal on Optimization, 2008, 20(4): 1956-1982. doi: 10. 1137/080738970.
    NOCEDAL J and WRIGHT S. Numerical Optimization[M]. NY, USA, Springer-Verlag New York, Inc., 2006: 497-506. doi: 10.1007/978-0-387-40065-5.
    LEVIN A, WEISS Y, DURAND F, et al. Understanding and evaluating blind deconvolution algorithms[C]. IEEE Conference on Computer Vision and Pattern Recognition, Miami Beach, FL, USA, 2009: 1964-1971. doi: 10.1109/ CVPR.2009.5206815.
    WANG Z, BOVIK A C, SHEIKH H R, et al. Image quality assessment: From error visibility to structural similarity[J]. IEEE Transactions on Image Processing, 2004, 13(4): 600-612. doi: 10.1109/TIP.2003.819861.
    XU L, ZHENG S, and JIA J Y. Unnatural L0 sparse representation for natural image deblurring[C]. IEEE Conference on Computer Vision and Pattern Recognition, Portland, Oregon, USA, 2013: 1107-1114. doi: 10.1109/ CVPR.2013.147.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1444) PDF downloads(366) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return