Advanced Search
Volume 39 Issue 9
Sep.  2017
Turn off MathJax
Article Contents
LIU Tao, XU Chengqian, LI Yubo. Construction of Zero Correlation Zone Gaussian Integer Sequence Sets Based on Difference Sets[J]. Journal of Electronics & Information Technology, 2017, 39(9): 2277-2281. doi: 10.11999/JEIT161177
Citation: LIU Tao, XU Chengqian, LI Yubo. Construction of Zero Correlation Zone Gaussian Integer Sequence Sets Based on Difference Sets[J]. Journal of Electronics & Information Technology, 2017, 39(9): 2277-2281. doi: 10.11999/JEIT161177

Construction of Zero Correlation Zone Gaussian Integer Sequence Sets Based on Difference Sets

doi: 10.11999/JEIT161177
Funds:

The National Natural Science Foundation of China (61671402, 61501395) , The Natural Science Foundation of Hebei Province (F2015203150, F2015203204), The Natural Science Research Programs of Hebei Educational Committee (QN2014027)

  • Received Date: 2016-11-02
  • Rev Recd Date: 2017-04-01
  • Publish Date: 2017-09-19
  • A unified construction of Guassian integer sequence sets with Zero Correlation Zone (ZCZ) is presented. Based on difference sets, optimal or almost optimal ZCZ Gaussian integer sequence sets are constructed using shift sequences, whose ZCZ length and alphabets can be flexibly chosen. Since the study of difference sets has achieved abundant?accomplishment, then the presented method will produce an abundance of ZCZ Gaussian integer sequence sets for CDMA systems.
  • loading
  • using Fourier duals of sparse perfect Gaussian integer sequences[C]. 2016 IEEE International Conference on
    WANG Senhung and LI Chihpeng. Novel MC-CDMA system
    Communications, Kuala Lumpur, Malaysia, 2016: 1-6. doi: 10.1109/ICC.2016.7511167.
    FAN Pingzhi and DARNELL M. Maximual length sequences over Gaussian integers[J]. Electronics Letters, 1994, 30(16): 1286-1287. doi: 10.1049/el:19940913.
    HU Weiwen, WANG Senhung, and LI Chihpeng. Gaussian integer sequences with ideal periodic autocorrelation functions[J]. IEEE Transactions on Signal Processing, 2012, 60(11): 6074-6079. doi: 10.1109/TSP.2012.2210550.
    CHEN Xinjiao, LI Chunlei, and RONG Chunming. Perfect Gaussian integer sequences from cyclic difference sets[C]. 2016 IEEE International Symposium on Information Theory, Barcelona, Spain, July 2016: 115-119. doi: 10.1109/ISIT. 2016.7541272.
    LEE Chongdao, LI Chihpeng, CHANG Hohsuan, et al. Further results on degree-2 perfect Gaussian integer sequences[J]. IET Communications, 2016, 10(12): 1542-1552. doi: 10.1049/iet-com.2015.1144.
    YANG Yang, TANG Xiaohu, and ZHOU Zhengchun. Perfect Gaussian integer sequences of odd prime length[J]. IEEE Signal Processing Letters, 2012, 19(10): 615-618. doi: 10.1109/LSP.2012.2209642.
    LEE Chongdao, HUANG Yupei, CHANG Yaotsu, et al. Perfect Gaussian integer sequences of odd period 2m-1[J]. IEEE Signal Processing Letters, 2015, 22(7): 881-885. doi: 10.1109/LSP.2014.2375313.
    PEI Soochang and CHANG Kuowei. Perfect Gaussian integer sequences of arbitrary length[J]. IEEE Signal Processing Letters, 2015, 22(8): 1040-1044. doi: 10.1109/LSP.2014. 2381642.
    CHANG Hohsuan, LI Chihpeng, LEE Chongdao, et al. Perfect Gaussian integer sequences of arbitrary composite length[J]. IEEE Transactions on Information Theory, 2015, 61(7): 4107-4115. doi: 10.1109/TIT.2015.2438828.
    陈晓玉, 许成谦, 李玉博. 新的完备高斯整数序列的构造方法 [J]. 电子与信息学报, 2014, 36(9): 2081-2085. doi: 10.3724/ SP.J.1146.2013.01697.
    CHEN Xiaoyu, XU Chengqian, and LI Yubo. New constructions of perfect Gaussian integer sequences[J] Journal of Electronics Information Technology, 2014, 36(9): 2081-2085. doi: 10.3724/SP.J.1146.2013.01697.
    WANG Senhung, LI Chihpeng, CHANG Hohsuan, et al. A systematic method for constructing sparse Gaussian integer sequences with ideal periodic autocorrelation functions[J]. IEEE Transactions on Communications, 2016, 64(1): 365-376. doi: 10.1109/TCOMM.2015.2498185.
    PENG Xiuping and XU Chengqian. New constructions of perfect Gaussian integer sequences of even length[J]. IEEE Communications Letters, 2014, 18(9): 1547-1550. doi: 10. 1109/LCOMM.2014.2336840.
    ZHOU Zhengchun and TANG Xiaohu. A new class of sequences with zero or low correlation zone based on interleaving technique[J]. IEEE Transactions on Information Theory, 2008, 54(9): 4267-4273. doi: 10.1109/TIT.2008. 928256.
    李玉博, 许成谦. 交织法构造移位不等价的ZCZ/LCZ序列集[J]. 电子学报, 2011, 39(4): 796-802.
    LI Yubo and XU Chengqian. Construction of cyclically distinct ZCZ/LCZ sequence sets based on interleaving technique[J]. Acta Electronica Sinica, 2011, 39(4): 796-802.
    刘凯, 姜昆, 交织法构造高斯整数零相关区序列集[J]. 电子与信息学报, 2017, 39(2): 328-334. doi: 10.11999/JEIT160276.
    LIU Kai and JIANG Kun. Construction of Gaussian integer sequence sets with zero correlation zone based on interleaving technique[J]. Journal of Electronics Information Technology, 2017, 39(2): 328-334. doi: 10.11999/JEIT160276.
    CHEN Xiaoyu, KONG Deming, XU Chengqian, et al. Constructions of Gaussian integer sequences with zero corelation zone[J]. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 2016, E99-A(6): 1260-1263. doi: 10.1587/transfun.E99.A.1260.
    LI Yubo and XU Chengqian. A new construction of zero correlation zone Gaussian integer sequence sets[J]. IEEE Communications Letters, 2016. 20(12): 2418-2421. doi: 10. 1109/LCOMM.2016.2609383.
    TANG Xiaohu, FAN Pingzhi, and MATSUFUJI Shinya. Lower bounds on correlation of spreading sequence set with low or zero correlation zone[J]. Electronics Letters, 2000, 36(6): 551-552. doi: 10.1049/el:20000462.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1140) PDF downloads(228) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return