Advanced Search
Volume 39 Issue 7
Jul.  2017
Turn off MathJax
Article Contents
LIAN Qiusheng, Qi Xiumei, CHEN Shuzhen, SHI Baoshun. Single-shot Phase Imaging Algorithm Based on Structural Sparsity[J]. Journal of Electronics & Information Technology, 2017, 39(7): 1546-1553. doi: 10.11999/JEIT161171
Citation: LIAN Qiusheng, Qi Xiumei, CHEN Shuzhen, SHI Baoshun. Single-shot Phase Imaging Algorithm Based on Structural Sparsity[J]. Journal of Electronics & Information Technology, 2017, 39(7): 1546-1553. doi: 10.11999/JEIT161171

Single-shot Phase Imaging Algorithm Based on Structural Sparsity

doi: 10.11999/JEIT161171
Funds:

The National Natural Science Foundation of China (61471313), The Natural Science Foundation of Hebei Province (F2014203076)

  • Received Date: 2016-11-02
  • Rev Recd Date: 2017-02-26
  • Publish Date: 2017-07-19
  • The key issue in phase imaging is phase retrieval. Due to the loss of the phase information, the phase retrieval problem is usually ill-posed. How to realize the phase retrieval by using appropriate prior information is an important problem. In this work, based on single-shot phase imaging with a coded aperture, a single-shot phase imaging algorithm, which uses the structural sparsity, is proposed. The proposed algorithm exploits the overlapping structural sparsity of the total variation, and represents the structural sparsity in the form of convolution, making the problem easy to solve. Moreover, the steepest descent method is utilized to solve the corresponding optimization problem. The experiment results show that the complex amplitude can be reconstructed from noisy diffraction pattern using the proposed algorithm.
  • loading
  • TIAN L and WALLER L. Quantitative differential phase contrast imaging in an LED array microscope[J]. Optics Express, 2015, 23(9): 11394-11403. doi: 10.1364/OE.23. 011394.
    SHECHTMAN Y, ELDAR Y C, COHEN O, et al. Phase retrieval with application to optical imaging: A contemporary overview[J]. IEEE Signal Processing Magazine, 2015, 32(3): 88-109. doi: 10.1109/MSP.2014.2352673.
    MAJI S K, YAHIA H M, and FUSCO T. A multifractal-based wavefront phase estimation technique for ground-based astronomical observations[J]. IEEE Transactions on Geoscience Remote Sensing, 2016, 54(3): 1705-1715. doi: 10.1109/TGRS.2015.2487546.
    SCHWESER F, DEISTUNG A, and REICHENBACH J R. Foundations of MRI phase imaging and processing for Quantitative Susceptibility Mapping (QSM)[J]. Zeitschrift Fr Medizinische Physik, 2015, 26(1): 6-34.doi: 10.1016/ j.zemedi.2015.10.002.
    DESSE J M, PICART P, and OLCHEWSKY F. Quantitative phase imaging in flows with high resolution holographic diffraction grating[J]. Optics Express, 2015, 23(18): 23726-23737. doi: 10.1364/OE.24.014322.
    GERCHBERG R and SAXON W. A practical algorithm for the determination of phase from image and diffraction plane pictures[J]. International Journal for Light and Electron Optics, 1972, 35(2): 237-250.
    杨国桢, 顾本源. 光学系统中振幅和相位的恢复问题[J]. 物理学报, 1981, 30(3): 410-413.
    YANG Guozhen and GU Benyuan. On the amplitude-phase retrieval problem in optical systems[J]. Acta Physica Sinica, 1981, 30(3): 410-413.
    FIENUP J R. Phase retrieval algorithms: A comparison[J]. Applied Optics, 1982, 21(15): 2758-2769. doi: 10.1364/ A0.21.002758.
    RODRIGUEZ J A, XU R, Chen C C, et al. Oversampling smoothness (OSS): An effective algorithm for phase retrieval of noisy diffraction intensities[J]. Applied Crystallography, 2013, 46(2): 312-318. doi: 10.1107/S0021889813002471.
    CANDES E J, ELDAR Y C, STROHMER T, et al. Phase retrieval via matrix completion[J]. SIAM Review, 2015, 57(2): 225-251. doi: 10.1137/110848074.
    程鸿, 章权兵, 韦穗. 基于整体变分的相位恢复[J]. 中国图象图形学报, 2010, 15(10): 1425-1429. doi: 10.11834/jig. 20101007.
    CHENG Hong, ZHANG Quanbing, and WEI Sui. Phase retrieval based on total variation[J]. Journal of Image and Graphics, 2010, 15(10): 1425-1429. doi: 10.11834/jig. 20101007.
    LOOCK S and PLONKA G. Phase retrieval for Fresnel measurements using a shearlet sparsity constraint[J]. Inverse Problems, 2014, 30(5): 1-13. doi: 10.1088/0266-5611/30/5/ 055005.
    杨振亚, 郑楚君. 基于压缩传感的纯相位物体相位恢复[J]. 物理学报, 2013, 62(10): 104203.doi: 10.7498/aps.62.104203.
    YANG Zhenya and ZHENG Chujun. Phase retrieval of pure phase object based on compressed sensing[J]. Acta Physica Sinica, 2013, 62(10): 104203. doi: 10.7498/aps.62.104203.
    BATES R H T. Uniqueness of solutions to two-dimensional Fourier phase problems for localized and positive images[J]. Computer Vision Graphics Image Processing, 1984, 25(2): 205-217.
    HORISAKI R, OGURA Y, AINO M, et al. Single-shot phase imaging with a coded aperture[J]. Optics Letters, 2014, 39(22): 6466-6469. doi: 10.1364/OL.39.006466.
    BIOUCASDIAS J M and FIGUEIREDO M A T. A new TwIST: Two-step iterative shrinkage/ thresholding algorithms for image restoration[J]. IEEE Transactions on Image Processing, 2007, 16(12): 2992-3004. doi: 10.1109/ TIP.2007.909319.
    EGAMI R, HORISAKI R, TIAN L, et al. Relaxation of mask design for single-shot phase imaging with a coded aperture[J]. Applied Optics, 2016, 55(8): 1830-1837. doi: 10.1364/AO. 55.001830.
    SHERVASHIDZE N and BACH F. Learning the Structure for Structured Sparsity[J]. IEEE Transactions on Signal Processing, 2015, 63(18): 4894-4902. doi: 10.1109/TSP.2015. 2446432.
    LIU J, HUANG T Z, SELESNICK I W, et al. Image restoration using total variation with overlapping group sparsity[J]. Information Sciences, 2015, 295: 232-246. doi: 10.1016/j.ins.2014.10.041.
    CHEN P Y and SELESNICK I W. Group-sparse signal denoising: Non-convex regularization, convex optimization[J]. IEEE Transactions on Signal Processing, 2013, 62(13): 3464-3478. doi: 10.1109/TSP.2014.2329274.
    HUANG J, HUANG X, and METAXAS D. Learning with dynamic group sparsity[C]. IEEE International Conference on Computer Vision, Japan, 2009: 64-71.
    SELESNICK I W and CHEN P Y. Total variation denoising with overlapping group sparsity[C]. IEEE International Conference on Acoustics, Speech and Signal Processing, Vancouver, BC, Canada, 2013: 5696-5700.
    CHEN P Y and SELESNICK I W. Translation-invariant shrinkage/thresholding of group sparse signals[J]. Signal Processing, 2014, 94(1): 476-489. doi: 10.1016/j.sigpro. 2013.06.011
    Gray R M. Toeplitz and circulant matrices: A review[J]. Foundations and Trends in Communications and Information Theory, 2006, 2(3): 155-239. doi: 10.1561/0100000006.
    CANDES E J, LI X, and SOLTANOLKOTABI M. Phase retrieval via wirtinger flow: Theory and algorithms[J]. IEEE Transactions on Information Theory, 2014, 61(4): 1985-2007. doi: 10.1109/TIT.2015.2399924.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1220) PDF downloads(781) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return