Advanced Search
Volume 39 Issue 7
Jul.  2017
Turn off MathJax
Article Contents
OU Weifeng, YANG Chunling, DAI Chao. A Two-stage Multi-hypothesis Reconstruction and Two Implementation Schemes for Compressed Video Sensing[J]. Journal of Electronics & Information Technology, 2017, 39(7): 1688-1696. doi: 10.11999/JEIT161142
Citation: OU Weifeng, YANG Chunling, DAI Chao. A Two-stage Multi-hypothesis Reconstruction and Two Implementation Schemes for Compressed Video Sensing[J]. Journal of Electronics & Information Technology, 2017, 39(7): 1688-1696. doi: 10.11999/JEIT161142

A Two-stage Multi-hypothesis Reconstruction and Two Implementation Schemes for Compressed Video Sensing

doi: 10.11999/JEIT161142
Funds:

The National Natural Science Foundation of China (61471173), The Natural Science Foundation of Guangdong Province (2016A030313455)

  • Received Date: 2016-10-26
  • Rev Recd Date: 2017-03-21
  • Publish Date: 2017-07-19
  • Compressed Video Sensing (CVS) has great significance to the scenarios with a resource-deprived video acquisition side. Reconstruction algorithm is the key technique in compressed video sensing. The Multi-Hypothesis (MH) prediction based prediction-residual reconstruction framework has good reconstruction performance. However, most of the existing multi-hypothesis prediction algorithms are proposed in measurement domain, which cause block artifacts in the predicted frames and decrease reconstruction accuracy due to the restriction of non-overlapping block partitioning. To address this issue, this paper proposes a two-stage Multi-Hypothesis Reconstruction (2sMHR) idea by incorporating the measurement-domain MH prediction with pixel-domain MH prediction. Two implementation schemes, GOP-wise (Gw) and Frame-wise (Fw) scheme, are designed for the 2sMHR. Simulation results show that the proposed 2sMHR algorithm can effectively reduce block artifacts and obtain higher video reconstruction accuracy while requiring lower computational complexity than the state-of- the-art CVS prediction methods.
  • loading
  • LIU Y and PADOS D A. Compressed-sensed-domain L1-PCA video surveillance[J]. IEEE Transactions on Multimedia, 2016, 18(3): 351-363. doi: 10.1109/TMM.2016. 2514848.
    GUO J, SONG B, and DU X. Significance evaluation of video data over media cloud based on compressed sensing[J]. IEEE Transactions on Multimedia, 2016, 18(7): 1297-1304. doi: 10.1109/TMM.2016.2564100.
    REHMAN A U, SHAH G A, and TAHIR M. Compressed sensing based adaptive video coding for resource constrained devices[C]. IEEE International Wireless Communications and Mobile Computing Conference, Paphos, Cyprus, 2016: 170-175.
    WANG J, GUPTA M, and SANKARANARAYANAN A C. LiSensA scalable architecture for video compressive sensing[C]. IEEE International Conference on Computational Photography, Houston, TX, 2015: 1-9.
    LLULL P, LIAO X J, YUAN X, et al. Coded aperture compressive temporal imaging[J]. Optics Express, 2013, 21(9): 10526-10545. doi: 10.1364/OE.21.010526.
    HOSSEINI M S and PLATANIOTIS K N. High-accuracy total variation with application to compressed video sensing [J]. IEEE Transactions on Image Processing, 2014, 23(9): 3869-3884. doi: 10.1109/TIP.2014.2332755.
    YANG J B, YUAN X, LIAO X J, et al. Video compressive sensing using Gaussian mixture models[J]. IEEE Transactions on Image Processing, 2014, 23(11): 4863-4878. doi: 10.1109/TIP.2014.2344294.
    常侃, 覃团发, 唐振华. 基于联合总变分最小化的视频压缩感知重建算法[J]. 电子学报, 2014, 42(12): 2415-2421. doi: 10.3969/j.issn.0372-2112.2014.12.012.
    CHANG K, QIN T F, and TANG Z H. Reconstruction algorithm for compressed sensing of video based on joint total variation minimization[J]. Acta Electronica Sinica, 2014, 42(12): 2415-2421. doi: 10.3969/j.issn.0372-2112.2014.12.012.
    ZHAO C, MA S W, ZHANG J, et al. Video compressive sensing reconstruction via reweighted residual sparsity[J]. IEEE Transactions on Circuits Systems for Video Technology, 2016, to be published. doi: 10.1109/TCSVT. 2016.2527181.
    MUN S and FOWLER J E. Residual reconstruction for block-based compressed sensing of video[C]. IEEE Data Compression Conference, Snowbird, 2011: 183-192.
    NARAYANAN S and MAKUR A. Compressive coded video compression using measurement domain motion estimation [C]. IEEE International Conference on Electronics, Computing and Communication Technologies, Bangalore, 2014: 1-6.
    GUO J, SONG B, LIU H X, et al. Motion estimation in measurement domain for compressed video sensing[C]. IEEE International Conference on Computer and Information Technology, Xi,an, 2014: 441-445.
    DO T T, CHEN Y, NGUYEN D T, et al. Distributed compressed video sensing[C]. IEEE International Conference on Image Processing, Cairo, 2009: 1393-1396.
    TRAMEL E W and FOWLER J E. Video compressed sensing with multihypothesis[C]. IEEE Data Compression
    Conference, Snowbird, 2011: 193-202.
    AZGHANI M, KARIMI M, and MARVASTI F. Multihypothesis compressed video sensing technique[J]. IEEE Transactions on Circuits Systems for Video Technology, 2016, 26(4): 627-635. doi: 10.1109/TCSVT.2015. 2418586.
    CHEN J, CHEN Y, QIN D, et al. An elastic net-based hybrid hypothesis method for compressed video sensing[J]. Multimedia Tools Applications, 2013, 74(6): 2085-2108. doi: 10.1007/s11042-013-1743-y.
    KUO Y H, WU K, and CHEN J. A scheme for distributed compressed video sensing based on hypothesis set optimization techniques[J]. Multidimensional Systems and Signal Processing, 2017, 28(1): 129-148. doi: 10.1007/s11045- 015-0337-4.
    GAN L. Block compressed sensing of natural images[C]. IEEE International Conference on Digital Signal Processing, Cardiff, 2007: 403-406.
    OU W F, YANG C L, LI W H, et al. A two-stage multi- hypothesis reconstruction scheme in compressed video sensing[C]. IEEE International Conference on Image Processing, Phoenix, AZ, USA, 2016: 2494-2498.
    杨春玲, 欧伟枫. CVS中基于多参考帧的最优多假设预测算法[J]. 华南理工大学学报(自然科学版), 2016, 44(1): 1-8. doi: 10.3969/j.issn.1000-565X.2016.01.001.
    YANG C L and OU W F. Multi-reference frames-based optimal multi-hypothesis prediction in compressed video sensing[J]. Journal of South China University of Technology (Natural Science Edition), 2016, 44(1): 1-8. doi: 10.3969/ j.issn.1000-565X.2016.01.001.
    MUN S and FOWLER J E. Block compressed sensing of images using directional transforms[C]. IEEE International Conference on Image Processing, Cairo, 2009: 3021-3024.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1273) PDF downloads(301) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return