Citation: | OU Weifeng, YANG Chunling, DAI Chao. A Two-stage Multi-hypothesis Reconstruction and Two Implementation Schemes for Compressed Video Sensing[J]. Journal of Electronics & Information Technology, 2017, 39(7): 1688-1696. doi: 10.11999/JEIT161142 |
LIU Y and PADOS D A. Compressed-sensed-domain L1-PCA video surveillance[J]. IEEE Transactions on Multimedia, 2016, 18(3): 351-363. doi: 10.1109/TMM.2016. 2514848.
|
GUO J, SONG B, and DU X. Significance evaluation of video data over media cloud based on compressed sensing[J]. IEEE Transactions on Multimedia, 2016, 18(7): 1297-1304. doi: 10.1109/TMM.2016.2564100.
|
REHMAN A U, SHAH G A, and TAHIR M. Compressed sensing based adaptive video coding for resource constrained devices[C]. IEEE International Wireless Communications and Mobile Computing Conference, Paphos, Cyprus, 2016: 170-175.
|
WANG J, GUPTA M, and SANKARANARAYANAN A C. LiSensA scalable architecture for video compressive sensing[C]. IEEE International Conference on Computational Photography, Houston, TX, 2015: 1-9.
|
LLULL P, LIAO X J, YUAN X, et al. Coded aperture compressive temporal imaging[J]. Optics Express, 2013, 21(9): 10526-10545. doi: 10.1364/OE.21.010526.
|
HOSSEINI M S and PLATANIOTIS K N. High-accuracy total variation with application to compressed video sensing [J]. IEEE Transactions on Image Processing, 2014, 23(9): 3869-3884. doi: 10.1109/TIP.2014.2332755.
|
YANG J B, YUAN X, LIAO X J, et al. Video compressive sensing using Gaussian mixture models[J]. IEEE Transactions on Image Processing, 2014, 23(11): 4863-4878. doi: 10.1109/TIP.2014.2344294.
|
常侃, 覃团发, 唐振华. 基于联合总变分最小化的视频压缩感知重建算法[J]. 电子学报, 2014, 42(12): 2415-2421. doi: 10.3969/j.issn.0372-2112.2014.12.012.
|
CHANG K, QIN T F, and TANG Z H. Reconstruction algorithm for compressed sensing of video based on joint total variation minimization[J]. Acta Electronica Sinica, 2014, 42(12): 2415-2421. doi: 10.3969/j.issn.0372-2112.2014.12.012.
|
ZHAO C, MA S W, ZHANG J, et al. Video compressive sensing reconstruction via reweighted residual sparsity[J]. IEEE Transactions on Circuits Systems for Video Technology, 2016, to be published. doi: 10.1109/TCSVT. 2016.2527181.
|
MUN S and FOWLER J E. Residual reconstruction for block-based compressed sensing of video[C]. IEEE Data Compression Conference, Snowbird, 2011: 183-192.
|
NARAYANAN S and MAKUR A. Compressive coded video compression using measurement domain motion estimation [C]. IEEE International Conference on Electronics, Computing and Communication Technologies, Bangalore, 2014: 1-6.
|
GUO J, SONG B, LIU H X, et al. Motion estimation in measurement domain for compressed video sensing[C]. IEEE International Conference on Computer and Information Technology, Xi,an, 2014: 441-445.
|
DO T T, CHEN Y, NGUYEN D T, et al. Distributed compressed video sensing[C]. IEEE International Conference on Image Processing, Cairo, 2009: 1393-1396.
|
TRAMEL E W and FOWLER J E. Video compressed sensing with multihypothesis[C]. IEEE Data Compression
|
Conference, Snowbird, 2011: 193-202.
|
AZGHANI M, KARIMI M, and MARVASTI F. Multihypothesis compressed video sensing technique[J]. IEEE Transactions on Circuits Systems for Video Technology, 2016, 26(4): 627-635. doi: 10.1109/TCSVT.2015. 2418586.
|
CHEN J, CHEN Y, QIN D, et al. An elastic net-based hybrid hypothesis method for compressed video sensing[J]. Multimedia Tools Applications, 2013, 74(6): 2085-2108. doi: 10.1007/s11042-013-1743-y.
|
KUO Y H, WU K, and CHEN J. A scheme for distributed compressed video sensing based on hypothesis set optimization techniques[J]. Multidimensional Systems and Signal Processing, 2017, 28(1): 129-148. doi: 10.1007/s11045- 015-0337-4.
|
GAN L. Block compressed sensing of natural images[C]. IEEE International Conference on Digital Signal Processing, Cardiff, 2007: 403-406.
|
OU W F, YANG C L, LI W H, et al. A two-stage multi- hypothesis reconstruction scheme in compressed video sensing[C]. IEEE International Conference on Image Processing, Phoenix, AZ, USA, 2016: 2494-2498.
|
杨春玲, 欧伟枫. CVS中基于多参考帧的最优多假设预测算法[J]. 华南理工大学学报(自然科学版), 2016, 44(1): 1-8. doi: 10.3969/j.issn.1000-565X.2016.01.001.
|
YANG C L and OU W F. Multi-reference frames-based optimal multi-hypothesis prediction in compressed video sensing[J]. Journal of South China University of Technology (Natural Science Edition), 2016, 44(1): 1-8. doi: 10.3969/ j.issn.1000-565X.2016.01.001.
|
MUN S and FOWLER J E. Block compressed sensing of images using directional transforms[C]. IEEE International Conference on Image Processing, Cairo, 2009: 3021-3024.
|