Advanced Search
Volume 39 Issue 7
Jul.  2017
Turn off MathJax
Article Contents
QIAO Xue, PENG Chen, DUAN He, ZHANG Yuyao. Shared Features Based Relative Attributes forZero-shot Image Classification[J]. Journal of Electronics & Information Technology, 2017, 39(7): 1563-1570. doi: 10.11999/JEIT161133
Citation: QIAO Xue, PENG Chen, DUAN He, ZHANG Yuyao. Shared Features Based Relative Attributes forZero-shot Image Classification[J]. Journal of Electronics & Information Technology, 2017, 39(7): 1563-1570. doi: 10.11999/JEIT161133

Shared Features Based Relative Attributes forZero-shot Image Classification

doi: 10.11999/JEIT161133
Funds:

The National Natural Science Foundation of China (41501485)

  • Received Date: 2016-10-25
  • Rev Recd Date: 2017-03-02
  • Publish Date: 2017-07-19
  • Most algorithms of the zero-shot image classification with relative attributes do not consider the relationship between attributes and classes, therefore a new relative attributes method based on shared features is proposed for zero-shot image classification. In analogy to the multi-task learning, the object classifier and attribute classifier are simultaneously learned in this method, from which a shared sub-space of lower dimensional features is obtained to mine the relationship between attributes and classes. Inspired by the success of shared features, a novel relative attributes model based on shared features is proposed to promote the performance of the relationship between attributes and classes, in which the ranking function per attribute is learned by using shared features. In addition, the novel relative attributes model based on shared features is applied to zero-shot image classification, which yields high accuracy due to the shared features included. Experimental results demonstrate that the proposed method can achieve high relative attributes learning efficiency and zero-shot image classification accuracy.
  • loading
  • GAN C, YANG T, and GONG B. Learning attributes equals multi-source domain generalization[C]. IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 2016: 87-97.
    QIN Jie, WANG Yunhong, LIU Li, et al. Beyond semantic attributes: Discrete latent attributes learning for zero-shot recognition[J]. IEEE Signal Processing Letters, 2016, 23(11): 1667-1671. doi: 10.1109/LSP.2016.2612247.
    PARIKH D and GRAUMAN K. Relative attributes[C]. IEEE International Conference on Computer Vision, Barcelona, Spain, 2011: 503-510.
    YANG X, ZHANG T, XU C, et al. Deep relative attributes[J]. IEEE Transactions on Multimedia, 2016, 18(9): 1832-1842. doi: 10.1109/TMM.2016.2582379.
    CHEN L, ZHANG Q, and LI B X. Predicting multiple attributes via relative multi-task learning[C]. IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 2014: 1027-1034.
    和华, 杜兰, 徐丹蕾, 等. 基于多任务复数因子分析模型的雷达高分辨距离像识别方法[J]. 电子与信息学报, 2015, 37(10): 2307-2313. doi: 10.11999/JEIT141591.
    HE Hua, DU Lan, XU Danlei, et al. Radar HRRP target recognition method based on multi-task learning and complex factor analysis[J]. Journal of Electronics Information Technology, 2015, 37(10): 2307-2313. doi: 10.11999/JEIT141591.
    HWANG S J, SHA F, and GRAUMAN K. Sharing features between objects and their attributes[C]. IEEE Conference on Computer Vision and Pattern Recognition, Colorado Springs, CO, USA, 2011: 1761-1768.
    LAMPERT C H, NICKISCH H, and HARMELING S. Attribute-based classification for zero-shot visual object categorization[J]. Pattern Analysis and Machine Intelligence, 2014, 36(3): 453-465. doi: 10.1109/TPAMI.2013.140.
    ARGYRIOU A, EVGENIOU T, and PONTIL M. Convex multi-task feature learning[J]. Machine Learning, 2008, 73(3): 243-272. doi: 10.1007/s10994-007-5040-8.
    SHI C, RUAN Q, AN G, et al. Hessian semi-supervised sparse feature selection based on L2,1/2-matrix norm[J]. IEEE Transactions on Multimedia, 2015, 17(1): 16-28. doi:10.1109/ TMM.2014.2375792.
    李秀友, 薛永华, 董云龙, 等. 基于迭代凸优化的恒模波形合成方法[J]. 电子与信息学报, 2015, 37(9): 2171-2176. doi: 10.11999/JEIT141593.
    LI Xiuyou, XUE Yonghua, DONG Yunlong, et al. Constant modulus waveform synthesis based on iterative convex optimization[J]. Journal of Electronics Information Technology, 2015, 37(9): 2171-2176. doi: 10.11999/ JEIT141593.
    YANG Z M, WU H J, LI C N, et al. Least squares recursive projection twin support vector machine for multi-class classification[J]. International Journal of Machine Learning Cybernetics, 2016, 7(3): 1-16. doi: 10.1007/s13042-015- 0394-x.
    及歆荣, 侯翠琴, 侯义斌. 无线传感器网络下线性支持向量机分布式协同训练方法研究[J]. 电子与信息学报, 2015(3): 708-714. doi: 10.11999/JEIT140408
    JI Xinrong, HOU Cuiqin, and HOU Yibin. Research on the distributed training method for linear SVM in WSN[J]. Journal of Electronics Information Technology, 2015, 37(3): 708-714. doi: 10.11999/JEIT140408.
    LI S, SHAN S, and CHEN X. Relative forest for attribute prediction[C]. Asian Conference on Computer Vision, Daejeon, Korea, 2012: 316-327.
    JAYARAMAN D and GRAUMAN K. Zero shot recognition with unreliable attributes[C]. Conference on Neural Information Processing Systems, Montreal, QC, Canada, 2014: 3464-3472.
    HUANG S, ELHOSEINY M, ELGAMMAL A, et al.. Learning hypergraph-regularized attribute predictors[C]. IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 2015: 409-417.
    XUE J H and HALL P. Why does rebalancing class-unbalanced data improve AUC for linear discriminant analysis?[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(5): 1109-12. doi: 10.1109/ TPAMI.2014.2359660.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1356) PDF downloads(419) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return