Citation: | QIAO Xue, PENG Chen, DUAN He, ZHANG Yuyao. Shared Features Based Relative Attributes forZero-shot Image Classification[J]. Journal of Electronics & Information Technology, 2017, 39(7): 1563-1570. doi: 10.11999/JEIT161133 |
GAN C, YANG T, and GONG B. Learning attributes equals multi-source domain generalization[C]. IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 2016: 87-97.
|
QIN Jie, WANG Yunhong, LIU Li, et al. Beyond semantic attributes: Discrete latent attributes learning for zero-shot recognition[J]. IEEE Signal Processing Letters, 2016, 23(11): 1667-1671. doi: 10.1109/LSP.2016.2612247.
|
PARIKH D and GRAUMAN K. Relative attributes[C]. IEEE International Conference on Computer Vision, Barcelona, Spain, 2011: 503-510.
|
YANG X, ZHANG T, XU C, et al. Deep relative attributes[J]. IEEE Transactions on Multimedia, 2016, 18(9): 1832-1842. doi: 10.1109/TMM.2016.2582379.
|
CHEN L, ZHANG Q, and LI B X. Predicting multiple attributes via relative multi-task learning[C]. IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 2014: 1027-1034.
|
和华, 杜兰, 徐丹蕾, 等. 基于多任务复数因子分析模型的雷达高分辨距离像识别方法[J]. 电子与信息学报, 2015, 37(10): 2307-2313. doi: 10.11999/JEIT141591.
|
HE Hua, DU Lan, XU Danlei, et al. Radar HRRP target recognition method based on multi-task learning and complex factor analysis[J]. Journal of Electronics Information Technology, 2015, 37(10): 2307-2313. doi: 10.11999/JEIT141591.
|
HWANG S J, SHA F, and GRAUMAN K. Sharing features between objects and their attributes[C]. IEEE Conference on Computer Vision and Pattern Recognition, Colorado Springs, CO, USA, 2011: 1761-1768.
|
LAMPERT C H, NICKISCH H, and HARMELING S. Attribute-based classification for zero-shot visual object categorization[J]. Pattern Analysis and Machine Intelligence, 2014, 36(3): 453-465. doi: 10.1109/TPAMI.2013.140.
|
ARGYRIOU A, EVGENIOU T, and PONTIL M. Convex multi-task feature learning[J]. Machine Learning, 2008, 73(3): 243-272. doi: 10.1007/s10994-007-5040-8.
|
SHI C, RUAN Q, AN G, et al. Hessian semi-supervised sparse feature selection based on L2,1/2-matrix norm[J]. IEEE Transactions on Multimedia, 2015, 17(1): 16-28. doi:10.1109/ TMM.2014.2375792.
|
李秀友, 薛永华, 董云龙, 等. 基于迭代凸优化的恒模波形合成方法[J]. 电子与信息学报, 2015, 37(9): 2171-2176. doi: 10.11999/JEIT141593.
|
LI Xiuyou, XUE Yonghua, DONG Yunlong, et al. Constant modulus waveform synthesis based on iterative convex optimization[J]. Journal of Electronics Information Technology, 2015, 37(9): 2171-2176. doi: 10.11999/ JEIT141593.
|
YANG Z M, WU H J, LI C N, et al. Least squares recursive projection twin support vector machine for multi-class classification[J]. International Journal of Machine Learning Cybernetics, 2016, 7(3): 1-16. doi: 10.1007/s13042-015- 0394-x.
|
及歆荣, 侯翠琴, 侯义斌. 无线传感器网络下线性支持向量机分布式协同训练方法研究[J]. 电子与信息学报, 2015(3): 708-714. doi: 10.11999/JEIT140408
|
JI Xinrong, HOU Cuiqin, and HOU Yibin. Research on the distributed training method for linear SVM in WSN[J]. Journal of Electronics Information Technology, 2015, 37(3): 708-714. doi: 10.11999/JEIT140408.
|
LI S, SHAN S, and CHEN X. Relative forest for attribute prediction[C]. Asian Conference on Computer Vision, Daejeon, Korea, 2012: 316-327.
|
JAYARAMAN D and GRAUMAN K. Zero shot recognition with unreliable attributes[C]. Conference on Neural Information Processing Systems, Montreal, QC, Canada, 2014: 3464-3472.
|
HUANG S, ELHOSEINY M, ELGAMMAL A, et al.. Learning hypergraph-regularized attribute predictors[C]. IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 2015: 409-417.
|
XUE J H and HALL P. Why does rebalancing class-unbalanced data improve AUC for linear discriminant analysis?[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(5): 1109-12. doi: 10.1109/ TPAMI.2014.2359660.
|