Advanced Search
Volume 39 Issue 9
Sep.  2017
Turn off MathJax
Article Contents
WANG Xiaofeng, LIU Gongshen, LI Jianhua. Multiresolution Community Detection Based on Fuzzy Clustering[J]. Journal of Electronics & Information Technology, 2017, 39(9): 2033-2039. doi: 10.11999/JEIT161116
Citation: WANG Xiaofeng, LIU Gongshen, LI Jianhua. Multiresolution Community Detection Based on Fuzzy Clustering[J]. Journal of Electronics & Information Technology, 2017, 39(9): 2033-2039. doi: 10.11999/JEIT161116

Multiresolution Community Detection Based on Fuzzy Clustering

doi: 10.11999/JEIT161116
Funds:

The National 973 Key Basic Research Program of China (2013CB329603), The National Natural Science Foundation of China (61472248, 61431008)

  • Received Date: 2016-10-20
  • Rev Recd Date: 2017-05-10
  • Publish Date: 2017-09-19
  • Focusing on the complexity of network structure and the indeterminacy of community partition, this paper puts forward a novel fuzzy clustering method for uncovering community structures. In contrast to previous studies, the proposed method disposes the similarity of connecting vertices with fuzzy relation. Based on local interactive information, it considers the fuzzy relation between vertices and the transitive similarity in network topology to divide vertices into communities. In addition, multiresolution communities can be detected by adjusting fuzzy parameter. In order to avoid subjectivity in the selection of cluster number, a new modularity is introduced to evaluate the effectiveness of the clustering analysis. It is proved by experiments that the method is ef?cient and stable to detect underlying communities.
  • loading
  • WANG Xiaofan, LI Xiang, and CHEN Guanrong. Network Science: A Introduction[M]. Beijing: Higher Education Press, 2012: 1-27.
    汪小帆, 李翔, 陈关荣. 网络科学导论[M]. 北京: 高等教育出版社, 2012: 1-27.
    NEWMAN M E J. Complex systems: A survey[J]. American Journal of Physics, 2011, 79(8): 800-810. doi: 10.1119/ 1.3590372.
    FORTUNAO S and DARKO H. Community detection in networks: A user guide[J]. Physics Reports, 2016, 659: 1-44. doi: 10.1016/j.physrep.2016.09.002.
    ZHANG P, MOORE C, and NEWMAN M E J. Community detection in networks with unequal groups[J]. Physical Review E, 2016, 93(1): 012303. doi: 10.1103/PhysRevE.93. 012303.
    NEWMAN M E J. Communities, modules and large-scale structure in networks[J]. Nature Physics, 2012, 8(1): 25-31. doi:10.1038/ nphys2162.
    SCHAEFFER S E. Graph clustering[J]. Computer Science Review, 2007, 1(1): 27-64. doi: 10.1016/j.cosrev.2007.05.001.
    MALLIAROS F D and VAZIRGIANNIS M. Clustering and community detection in directed networks: A survey[J]. Physics Reports, 2013, 533(4): 95-142. doi: 10.1016/j.physrep. 2013.08.002.
    CLAUSET A, NEWMAN M E J, and MOORE C. Finding community structure in very large networks[J]. Physical Review E, 2004, 70(6): 066111. doi: 10.1103/PhysRevE.70. 066111.
    LI Ming, DENG Youjin, and WANG Binghong. Clique percolation in random graphs[J]. Physical Review E, 2015, 92(4): 042116. doi: 10.1103/PhysRevE.92.042116.
    LEE C, REID F, FCDAID A, et al. Detecting highly overlapping community structure by greedy clique expansion [C]. Proceeding of 4th SNA-KDD Workshop on Social Network Mining and Analysis, Washington DC, USA, 2010: 33-42.
    AFSARMANESH N and MAGNANI M. Finding overlapping communities in multiplex networks[OL]. https://arxiv.org/ abs/1602.03746.2016.
    YANG B and LIU J. Discovering global network communities based on local centralities[J]. ACM Transactions on the Web, 2008, 2(1): 1-32. doi: 10.1145/1326561.1326570.
    NIKOLAEV A G, RAZIB R, and KUCHERIYA A. On efficient use of entropy centrality for social network analysis and community detection[J]. Social Networks, 2015, 40: 154-162. doi: 10.1016/j.socnet.2014.10.002.
    NASCIMENTO M C V and CARVALHO A C. Spectral methods for graph clustering-A survey[J]. European Journal of Operational Research, 2011, 211(2): 221-231. doi: 10.1016/ j.ejor.2010.08.012.
    YANG J and LESKOVEC J. Defining and evaluating network communities based on ground-truth[J]. Knowledge and Information Systems, 2015, 42(1): 181-213. doi: 10.1007/ s10115-013-0693-z.
    XIANG Ju, HU Tao, ZHANG Yan, et al. Local modularity for community detection in complex networks[J]. Physica A: Statistical Mechanics and Its Applications, 2016, (443): 451-459. doi: 10.1016/j.physa.2015.09.093.
    BLONDEL V D, GUILLAUME J L, LAMBIOTTE R, et al. Fast unfolding of communities in large networks[J]. Journal of Statistical Mechanics: Theory and Experiment, 2008, (10): P10008.
    GOMEZ D, RODRIGUEZ J T, YANEZ J, et al. A new modularity measure for fuzzy community detection problems based on overlap and grouping functions[J]. Approximate Reasoning, 2016, 74: 88-107. doi: 10.1016/j.ijar. 2016.03.003.
    AHN Y Y, BAGROW J P, and LEHMANN S. Link communities reveal multiscale complexity in networks[J]. Nature, 2010, 466(7307): 761-764. doi: 10.1038/nature09182.
    DING Z, ZHANG X, SUN D, et al. Overlapping community detection based on network decomposition[J]. Scientific Reports, 2016, 6: 24115. doi: 10.1038/srep24115.
    HUANG Lan, WANG Guishen, WANG Yan, et al. A link density clustering algorithm based on automatically selecting density peaks for overlapping community detection[J]. International Journal of Modern Physics B, 2016, 30(24): 1650167. doi: 10.1142/S0217979216501678.
    NEWMAN M E J and GIRVAN M. Finding and evaluating community structure in networks[J]. Physical Review E, 2004, 69(2): 026113.
    PAN Y, LI D H, LIU J G, et al. Detecting community structure in complex networks via node similarity[J]. Physica A: Statistical Mechanics and Its Applications, 2010, 389(14): 2849-2857. doi: 10.1016/j.physa. 2010.03.006.
    PAPADOPOULOS F, KITSAK M, SERRANO M A, et al. Popularity versus similarity in growing networks[J]. Nature, 2012, 489(7417): 537-540. doi: 10.1038/nature11459.
    RADICCHI F, CASTELLANO C, CECCONI F, et al. Defining and identifying communities in networks[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(9): 2658-2663. doi: 10.1073/ pnas.0400054101.
    XIE Jierui, KELLEY S, and SZYMANSKI B K. Overlapping community detection in networks: the state-of-the-art and comparative study[J]. ACM Computing Surveys (CSUR), 2013, 45(4): Article No. 43. doi: 10.1145/2501654.2501657.
    XU Rui and WUNSCH D. Survey of clustering alogrithms[J]. IEEE Transactions on Neural Networks, 2005, 3(16): 645-678. doi: 10.1109/TNN.2005.845141.
    陈水利, 李敬功, 王向公. 模糊集理论及其应用[M]. 北京: 科学出版社, 2005: 1-448.
    CHEN Shuili, LI Jinggong, and WANG Xianggong. Fuzzy Set Theory and Its Application[M]. Beijing: Science Press, 2005: 1-448.
    ZADEH L A. Toward a generalized theory of uncertainty (GTU)-an outline[J]. Information Sciences, 2005, 172(1): 1-40.
    BARALDI A and BLONDA P. A survey of fuzzy clustering algorithms for pattern recognition I[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 1999, 29(6): 778-785. doi: 10.1109/3477.809032.
    DANON L, DIAZ-GUILERA A, DUCH J, et al. Comparing community structure identification[J]. Journal of Statistical Mechanics-Theory and Experiment, 2005, (9): P09008.
    LANCICHINETTI A, FORTUNATO S, and RADICCHI F. Benchmark graphs for testing community detection algorithms[J]. Physical Review E, 2008, 78(4): 046110. doi: 10.1103/PhysRevE. 78.046110.
    PONS P and LATAPY M. Computing communities in large networks using random walks[C]. Proceeding of 20th International Symposium on Computer and Information Sciences, Turkey, 2005: 284-293. doi: 10.1007/11569596_31.
    ROSVALL M and BERGSTROM C T. Maps of random walks on complex networks reveal community structure[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(4): 1118-1123. doi: 10.1073/ pnas.0706851105.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1544) PDF downloads(483) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return