Advanced Search
Volume 39 Issue 8
Aug.  2017
Turn off MathJax
Article Contents
CHENG Feng, GONG Ziping, ZHANG Chi, WAN Xianrong. A New Rotation Measurement-based Method for Array Gain-phase Errors Calibration[J]. Journal of Electronics & Information Technology, 2017, 39(8): 1899-1905. doi: 10.11999/JEIT161058
Citation: CHENG Feng, GONG Ziping, ZHANG Chi, WAN Xianrong. A New Rotation Measurement-based Method for Array Gain-phase Errors Calibration[J]. Journal of Electronics & Information Technology, 2017, 39(8): 1899-1905. doi: 10.11999/JEIT161058

A New Rotation Measurement-based Method for Array Gain-phase Errors Calibration

doi: 10.11999/JEIT161058
Funds:

The Director Foundation of The State Key Laboratory of CEMEE (CEMEE2014Z0101B), The National Natural Science Foundation of China (U1333106, 61331012, 61371197), The National Key RD Plan (2016YFB0502403)

  • Received Date: 2016-10-12
  • Rev Recd Date: 2017-04-24
  • Publish Date: 2017-08-19
  • It is not easy to accurately measure the direction angles of calibration-source signals, which limits the precision of array active-calibration methods. On the other hand, passive-calibration methods are difficult to apply to the presence of large array errors, which severely limits their practical applications. This paper proposes a rotation measurement-based method to calibrate array gain-phase errors, which can achieve high calibration precision without measuring the direction angles of calibration-source signals. Using the known array-rotation angles, the maximum likelihood-based method is able to simultaneously estimate the array gain-phase errors, direction angles and complex amplitudes of calibration-source signals without ambiguity. Compared with accurately measuring the direction angles of calibration-source signals, accurately measuring the array-rotation angles is much easier to be accomplished with a special test turntable, thus the proposed method can achieve quite high calibration precision at a low cost. Some simulation tests demonstrate the effectiveness and generality of the proposed method.
  • loading
  • KRIM H and VIBERG M. Two decades of array signal processing research[J]. IEEE Signal Processing Magazine, 1996, 13(4): 67-94. doi: 10.1109/79.526899.
    SWINDLEHURST A and KAILATH T. A performance analysis of subspace based method in the presence of model errors, part I: The MUSIC algorithm[J]. IEEE Transactions on Signal Processing, 1992, 40(7): 1758-1774. doi: 10.1109/ 78.143447.
    FERROL A, LARZABAL P, and VIBERG M. Statistical analysis of the MUSIC algorithm in the presence of modeling errors, taking into account the resolution probability[J]. IEEE Transactions on Signal Processing, 2010, 58(8): 4156-4166. doi: 10.1109/TSP.2010.2049263.
    曹圣红. 存在阵列误差条件下波达方向估计算法研究[D]. [博士论文], 中国科学技术大学, 2014.
    CAO Shenghong. Direction of arrival estimation algorithms in the presence of array error[D]. [Ph.D. dissertation], University of Science and Technology of China, 2014.
    闫路. 基于阵列误差分析的稳健自适应波束形成算法研究[D]. [硕士论文], 北京理工大学, 2015.
    YAN Lu. Research on robust adaptive beamforming based on analysis of array error[D]. [Master dissertation], Beijing Institute of Technology, 2015.
    王永良, 陈辉, 彭应宁, 等. 空间谱估计理论与算法[M]. 北京: 清华大学出版社, 2004: 415-465.
    WANG Yongliang, CHEN Hui, PENG Yingning, et al. Spatial Spectrum Estimation Theory and Algorithms[M]. Beijing: Tsinghua University Press, 2004: 415-465.
    TUNCER E and FRIEDLANDER B. Classical and Modern Direction-of-Arrival Estimation[M]. Burlington, MA: Academic, 2009: 93-124.
    刘书. 波达方向估计中阵列误差联合校正算法研究[D]. [硕士论文], 重庆大学, 2015.
    LIU Shu. The research of joint calibration algorithms in DOA estimation[D]. [Master dissertation], Chongqing University, 2015.
    张驰. 传感器阵列幅相误差校正方法研究[D]. [硕士论文], 武汉大学, 2015.
    ZHANG Chi. Research on sensor array calibration techniques of amplitude and phase error[D]. [Master dissertation], Wuhan University, 2015.
    NG B C and SEE C M S. Sensor-array calibration using a maximum likelihood approach[J]. IEEE Transactions on Antennas and Propagation, 1996, 44(6): 827-835. doi: 10.1109 /8.509886.
    STAVROPOULOS K V and MANIKAS A. Array calibration in the presence of unknown sensor characteristics and mutual coupling[C]. Proceedings of the European Signal Processing Conference, Tampere, Finland, 2000, 3: 1417-1420.
    王鼎, 吴瑛. 多径条件下的乘性阵列误差有源校正算法[J]. 中国科学: 信息科学, 2015, 45(2): 270-288. doi: 10.1360/ N112013-00060.
    WANG Ding and WU Ying. The multiplicative array errors calibration algorithms in the presence of multipath[J]. Scientia Sinica Informationis, 2015, 45(2): 270-288. doi: 10.1360/N112013-00060.
    张柯, 程菊明, 付进. 阵列通道不一致性误差快速有源校正算法[J]. 电子与信息学报, 2015, 37(9): 2110-2116. doi: 10.11999 /JEIT141651.
    ZHANG Ke, CHENG Juming, and FU Jin. Fast active error calibration algorithm for array channel uncertainty[J]. Journal of Electronics Information Technology, 2015, 37(9): 2110-2116. doi: 10.11999/JEIT141651.
    王敏, 马晓川, 鄢社锋, 等. 阵列幅度/相位误差的有源校正新方法[J]. 信号处理, 2015, 31(11): 1389-1395. doi: 10.3969/ j.issn.1003-0530.2015.11.001.
    WANG Min, MA Xiaochuan, YAN Shefeng, et al. New calibration method for array gain and phase errors with signal sources[J]. Journal of Signal Processsing, 2015, 31(11): 1389-1395. doi: 10.3969/j.issn.1003-0530.2015.11.001.
    LI Qiong, GAN Long, and YE Zhongfu. An overview of self- calibration in sensor array processing[C]. 6th International Symposium on Antennas, Propagation and the EM Theory Proceedings, Beijing, 2003: 279-282. doi: 10.1109/ISAPE. 2003.1276682.
    FRIEDLANDER B and WEISS A J. Direction finding in the presence of mutual coupling[J]. IEEE Transactions on Antennas and Propagation, 1991, 39(3): 273-284. doi: 10.1109 /8.76322.
    LIU Aifei, LIAO Guisheng, ZENG Cao, et al. An eigenstructure method for estimating DOA and sensor gain- phase errors[J]. IEEE Transactions on Signal Processing, 2011, 59(12): 5944-5956. doi: 10.1109/TSP.2011.2165064.
    DAI Zheng, SU Weimin, GU Hong, et al. Sensor gain-phase errors estimation using disjoint sources in unknown directions[J]. IEEE Sensors Journal, 2016, 16(10): 3724-3730. doi: 10.1109/JSEN.2016.2531282.
    景小荣, 杨洋, 张祖凡, 等. 高斯噪声背景下多用户波达方向估计与互耦自校正[J]. 电子与信息学报, 2014, 36(5): 1266-1270. doi: 10.3724/SP.J.1146.2013.01042.
    JING Xiaorong, YANG Yang, ZHANG Zufan, et al. Multiuser DOA estimation and mutual coupling error self-calibration in Gaussian noise backgrounds[J]. Journal of Electronics Information Technology, 2014, 36(5): 1266-1270. doi: 10.3724 /SP.J.1146.2013.01042.
    HUNG E K L. A critical study of a self-calibrating direction- finding method for arrays[J]. IEEE Transactions on Signal Processing, 1994, 42(2): 471-474. doi: 10.1109/78.275633.
    FLIELLER A, FERROL A, LARZABAL P, et al. Robust bearing estimation in the presence of direction-dependent modelling errors: Identiability and treatment[C]. IEEE International Conference on Acoustics, Speech and Signal Processing, Detroit, USA, 1995, 3: 1884-1887. doi: 10.1109 /ICASSP.1995.480579.
    KAY S M. Fundamentals of Statistical Signal Processing: Estimation Theory[M]. Englewood Cliffs, NJ: Prentice-Hall, 1993: 254260.
    张贤达. 矩阵分析与应用[M]. 北京: 清华大学出版社, 2004: 101-105.
    ZHANG Xianda. Matrix Analysis and Applications[M]. Beijing: Tsinghua University Press, 2004: 101-105.
    张建新. 天线测试转台的结构设计及对准误差分析研究[D]. [硕士论文], 哈尔滨工业大学, 2015.
    ZHANG Jianxin. Structure design and alignment error analysis of the antenna test turntable[D]. [Master dissertation], Harbin Institute of Technology, 2015.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1323) PDF downloads(298) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return