Advanced Search
Volume 38 Issue 12
Jan.  2017
Turn off MathJax
Article Contents
DU Lan, SHI Huiruo, LI Linsen, SUN Yongguang, HU Jing. Feature Extraction Method of Narrow-band Radar Airplane Signatures Based on Fractional Fourier Transform[J]. Journal of Electronics & Information Technology, 2016, 38(12): 3093-3099. doi: 10.11999/JEIT161035
Citation: DU Lan, SHI Huiruo, LI Linsen, SUN Yongguang, HU Jing. Feature Extraction Method of Narrow-band Radar Airplane Signatures Based on Fractional Fourier Transform[J]. Journal of Electronics & Information Technology, 2016, 38(12): 3093-3099. doi: 10.11999/JEIT161035

Feature Extraction Method of Narrow-band Radar Airplane Signatures Based on Fractional Fourier Transform

doi: 10.11999/JEIT161035
Funds:

The National Natural Science Foundation of China (61271024, 61322103), The Foundation for Doctoral Supervisor of China (20130203110013), The Natural Science Foundation of Shaanxi Province (2015JZ016)

  • Received Date: 2016-10-08
  • Rev Recd Date: 2016-12-01
  • Publish Date: 2016-12-19
  • This paper studies on the feature extraction methods for the classification of helicopter, propeller-driven aircraft, and turbojet using a conventional narrow-band radar system. In the modern battlefield, the helicopter, propeller aircraft and jet aircraft with different motor performances each bear an important task. But the classification performance of the traditional features for the three types of aircraft target classification is not good enough, so the Fractional Fourier Transform (FrFT) is introduced. Based on the existing feature extraction method, the fractional order features of three kinds of aircraft targets are extracted from the fractional domain after FrFT to extend feature domain. Then, the effective features are selected from all extracted features and the classification of the three categories via linear Relevance Vector Machine (RVM) is realized. The experiments demonstrate that the proposed fractional features can improve the classification performance in comparison with some existing features from the time-domain and Doppler-frequency domain.
  • loading
  • CHEN V C. Radar signatures of rotor blades[J]. SPIE, 2001, 4391(1): 63-70. doi: 10.1117/12.421231.
    YONG Y W, HOON P J, WOO B J, et al. Automatic feature extraction from jet engine modulation signals based on an image processing method[J]. IET Radar, Sonar Navigation, 2015, 9(7): 783-789. doi: 10.1049/iet-rsn.2014. 0281.
    杜兰, 李林森, 李玮璐, 等. 基于时域回波相关性特征的飞机目标分类方[J]. 雷达学报, 2015, 4(6): 621-629. doi: 10.12000 /JR15117.
    DU Lan, LI Linsen, LI Weilu, et al. Aircraft target classification based on correlation features from time domain echoes[J]. Journal of Radars, 2015, 4(6): 621-629. doi: 10. 12000/JR15117.
    陈娟. 基于多特征融合的雷达目标识别[D]. [硕士论文], 西安电子科技大学, 2010.
    CHEN Juan. Radar target recognition based on multi- features fusion[D]. [Master dissertation], Xidian University, 2010.
    陶然, 齐林, 王越. 分数阶Fourier变换的原理与应用[M]. 北京: 清华大学出版社, 2004: 3-4, 31-45.
    TAO Ran, QI Lin, and WANG Yue. Principle and Application of Fractional Fourier Transform[M]. Beijing: Tsinghua University Press, 2004: 3-4, 31-45.
    OZAKTAS H M and BARSHAN B. Convolution, filtering, and multiplexing in fractional Fourier domains and their relation to LFM and wavelet transforms[J]. Journal of the Optical Society of America A-Optics Image Science and Vision, 1993, 11(2): 547-559. doi: 10.1364/JOSAA.11. 000547.
    PENG Hsiaowei, CHANG Hsuanting, and LIN Chingchou. 2-D linear frequency modulation signal separation using fractional Fourier transform[C]. International Symposium on Computer Consumer and Control, Xian, 2016: 755-758. doi: 10.1109/IS3C.2016.193.
    LI Y B, ZHANG F, KANG X J, at al. Image encryption based on the iterative fractional Fourier transform and a novel pixel scrambling technique[C]. IET International Radar Conference, Hangzhou, 2015: 1-6. doi: 10.1049/cp.2015.1036.
    冉启文. 小波变换与分数阶傅里叶变换理论及应用[M]. 哈尔滨: 哈尔滨工业大学出版社, 2001: 1-7.
    RAN Qiwen. Theory and Application of Wavelet Transform
    and Fractional Fourier Transform[M]. Harbin: Harbin Institute of Technology Press, 2001: 1-7.
    GUAN J, CHEN X L, HUANG Y, at al. Adaptive fractional Fourier transform based detection algorithm for moving target in heavy sea clutter[J]. IET Radar, Sonar Navigation, 2012, 6(5): 389-401. doi: 10.1049/iet-rsn.2011. 0030.
    王亚星. 基于分数阶傅里叶变换的人脸识别[D]. [硕士论文], 郑州大学, 2015
    WANG Yaxing. Human facial expression recognition based on fractional Fourier transform[D]. [Master dissertation], Zhengzhou University, 2015.
    OZAKTAS H M, ARIKAN O, KUTAY M A, et al. Digital computation of the fractional Fourier transform[J]. IEEE Transactons on Signal Processing, 1996, 44(9): 2141-2150.
    李志鹏, 马田香, 杜兰, 等. 在雷达HRRP识别中多特征融合多类分类器设计[J]. 西安电子科技大学学报, 2013, 40(1): 111-117. doi: 10.3969/j.issn.1001-2400.2013.01.020.
    LI Zhipeng, MA Tianxiang, DU Lan, et al. Multi-class classifier design for feature fusion in radar HRRP recognition [J]. Journal of Xidian University , 2013, 40(1): 111-117. doi: 10.3969/j.issn.1001-2400.2013.01.020.
    王宝帅, 杜兰, 刘宏伟. 基于经验模态分解的空中飞机目标分类[J]. 电子与信息学报, 2012, 34(9): 2116-2121. doi: 10. 3724/SP.J.1146.2012.00147.
    WANG Baoshuai, DU Lan, and LIU Hongwei. Aircraft classification based on empirical mode decomposition[J]. Journal of Electronics Information Technology, 2012, 34(9): 2116-2121. doi: 10.3724/SP.J.1146.2012.00147.
    MARTIN J and MULGREW B. Analysis of the theoretical radar return signal from aircraft propeller blades[C]. IEEE International Conference Radar, New York, USA, 1990: 569-572.
    BELL M R and GRUBBS R A. JEM modeling and measurement for radar target identification[J]. IEEE Transactions on Aerospace and Electronic Systems, 1993, 29(1): 73-87. doi: 10.1109/7.249114.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1653) PDF downloads(302) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return