Advanced Search
Volume 38 Issue 12
Jan.  2017
Turn off MathJax
Article Contents
XU Bin, CHEN Bo, LIU Hongwei, JIN Lin. Attention-based Recurrent Neural Network Model for Radar High-resolution Range Profile Target Recognition[J]. Journal of Electronics & Information Technology, 2016, 38(12): 2988-2995. doi: 10.11999/JEIT161034
Citation: XU Bin, CHEN Bo, LIU Hongwei, JIN Lin. Attention-based Recurrent Neural Network Model for Radar High-resolution Range Profile Target Recognition[J]. Journal of Electronics & Information Technology, 2016, 38(12): 2988-2995. doi: 10.11999/JEIT161034

Attention-based Recurrent Neural Network Model for Radar High-resolution Range Profile Target Recognition

doi: 10.11999/JEIT161034
Funds:

The National Science Fund for Distinguished Young Scholars (61525105), The National Natural Science Foundation of China (61201292, 61322103, 61372132), The Program for New Century Excellent Talents in University (FANEDD-201156)

  • Received Date: 2016-10-08
  • Rev Recd Date: 2016-11-25
  • Publish Date: 2016-12-19
  • To improve the performance of radar High-Resolution Range Profile (HRRP) target recognition, a new attention-based model is proposed based on time domain feature. This architecture encodes the time domain feature which can reveal the correlation inside the target with Recurrent Neural Network (RNN). Then, this model gives a weight to each part and sums the hidden feature with each weight for the final recognition. Experiments based on measured data show that the attention-based model is effective for radar HRRP recognition. Furthermore, the proposed method can still find the support areas even with the removed test data.
  • loading
  • 张英军, 白向辉. 雷达自动目标识别中的HRRP特征提取研究[J]. 系统工程与电子技术, 2007, 29(12): 2047-2053. doi: 10.3321/j.issn:1001-506x.2007.12.012.
    ZHANG Junying and BAI Xianghui. Study of the HRRP feature extraction in radar automatic target recognition[J]. Systems Engineering and Electronics, 2007, 29(12): 2047- 2053. doi: 10.3321/j.issn:1001-506x.2007.12.012.
    梁海涛, 张学礼, 童创明, 等. 基于小波分解与方位角平均HRRP的SVM目标识别方法[J]. 数据采集与处理, 2010, 25(1): 29-35. doi: 10.3969/j.issn.1004-9037.2010.01.006.
    LIANG Haitao, ZHANG Xueli, TONG Chuangming, et al. SVM target identification method based on wavelet decomposition and azimuth average HRRP[J]. Journal of Data Acquisition Processing, 2010, 25(1): 29-35. doi: 10.3969/j.issn.1004-9037.2010.01.006.
    DU Lan, LIU Hongwei, BAO Zheng, et al. Radar automatic target recognition using complex high-resolution range profiles[J]. IET Radar, Sonar Navigation, 2007, 1(1): 18-26. doi: 10.1049/iet-rsn:20050119.
    FENG B, DU L, LIU H W, et al. Radar HRRP target recognition based on K-SVD algorithm[C]. IEEE CIE International Conference on Radar, Chengdu, 2011: 642-645.
    潘勉, 王鹏辉, 杜兰, 等. 基于TSB-HMM模型的雷达高分辨距离像目标识别方法[J]. 电子与信息学报, 2013, 35(7): 1547-1556. doi: 10.3724/SP.J.1146.2012.01190.
    PAN Mian, WANG Penghui, DU Lan, et al. Radar HRRP target recognition based on truncated stick-breaking hidden Markov model[J]. Journal of Electronics Information Technology, 2013, 35(7): 1547-1556. doi: 10.3724/SP.J.1146. 2012.01190.
    PAN Mian, DU Lan, WANG Penghui, et al. Multi-task hidden Markov modeling of spectrogram feature from radar high-resolution range profiles[J]. EURASIP Journal on Advances in Signal Processing, 2012, 2012(1): 1-17. doi: 10.1109/CIE-Radar.2011.6159624.
    JI S H, LIAO X J, and CARIN L. Adaptive multi-aspect target classification and detection with hidden Markov models[C]. International Conference on Acoustics, Speech and Signal Processing, Montreal, 2004: 125-129.
    GREGOR K, DANIHELKA I, GRAVES A, et al. DRAW: A recurrent neural network for image generation[C]. Proceedings of the 32nd International Conference on Machine Learning, Lille, 2015: 1-8.
    ZAREMBA W and SUTSKEVER I. Recurrent neural network regularization[C]. International Conference on Learning Representations, San Diego, 2015: 1-8.
    SRIVASTAVE N, MANSIMOV E, and SALAKHUTDINOV R. Unsupervised learning of video representations using LSTMs[C]. Proceedings of the 32nd International Conference on Machine Learning, Lille, 2015: 1-9.
    LI J W, LUONG M T, and JURAFSKY D. A hierarchical neural autoencoder for paragraphs and documents[C]. Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing, Beijing, 2015: 1106-1115.
    CHEN J X, YANG L, ZHANG Y Z, et al. Combining fully convolutional and recurrent neural networks for 3D biomedical image segmentation[C]. 29th Conference on Neural Information Processing Systems, Barcelona, 2016: 1-9.
    ELMAN J L. Finding structure in time[J]. Cognitive Science, 1990, 14(2): 179-211.
    CHOROWSKI J, BAHDANAU D, SERDYUK D, et al. Attention-based models for speech recognition[C]. 27th Conference on Natural Language Processing Systems, Montreal, 2015: 1-19.
    SU B and LU S J. Accurate scene text recognition based on recurrent neural network[C]. 12th Asian Conference on Computer Vision, Singapore, 2015: 35-48.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2157) PDF downloads(521) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return