Citation: | XU Bin, CHEN Bo, LIU Hongwei, JIN Lin. Attention-based Recurrent Neural Network Model for Radar High-resolution Range Profile Target Recognition[J]. Journal of Electronics & Information Technology, 2016, 38(12): 2988-2995. doi: 10.11999/JEIT161034 |
张英军, 白向辉. 雷达自动目标识别中的HRRP特征提取研究[J]. 系统工程与电子技术, 2007, 29(12): 2047-2053. doi: 10.3321/j.issn:1001-506x.2007.12.012.
|
ZHANG Junying and BAI Xianghui. Study of the HRRP feature extraction in radar automatic target recognition[J]. Systems Engineering and Electronics, 2007, 29(12): 2047- 2053. doi: 10.3321/j.issn:1001-506x.2007.12.012.
|
梁海涛, 张学礼, 童创明, 等. 基于小波分解与方位角平均HRRP的SVM目标识别方法[J]. 数据采集与处理, 2010, 25(1): 29-35. doi: 10.3969/j.issn.1004-9037.2010.01.006.
|
LIANG Haitao, ZHANG Xueli, TONG Chuangming, et al. SVM target identification method based on wavelet decomposition and azimuth average HRRP[J]. Journal of Data Acquisition Processing, 2010, 25(1): 29-35. doi: 10.3969/j.issn.1004-9037.2010.01.006.
|
DU Lan, LIU Hongwei, BAO Zheng, et al. Radar automatic target recognition using complex high-resolution range profiles[J]. IET Radar, Sonar Navigation, 2007, 1(1): 18-26. doi: 10.1049/iet-rsn:20050119.
|
FENG B, DU L, LIU H W, et al. Radar HRRP target recognition based on K-SVD algorithm[C]. IEEE CIE International Conference on Radar, Chengdu, 2011: 642-645.
|
潘勉, 王鹏辉, 杜兰, 等. 基于TSB-HMM模型的雷达高分辨距离像目标识别方法[J]. 电子与信息学报, 2013, 35(7): 1547-1556. doi: 10.3724/SP.J.1146.2012.01190.
|
PAN Mian, WANG Penghui, DU Lan, et al. Radar HRRP target recognition based on truncated stick-breaking hidden Markov model[J]. Journal of Electronics Information Technology, 2013, 35(7): 1547-1556. doi: 10.3724/SP.J.1146. 2012.01190.
|
PAN Mian, DU Lan, WANG Penghui, et al. Multi-task hidden Markov modeling of spectrogram feature from radar high-resolution range profiles[J]. EURASIP Journal on Advances in Signal Processing, 2012, 2012(1): 1-17. doi: 10.1109/CIE-Radar.2011.6159624.
|
JI S H, LIAO X J, and CARIN L. Adaptive multi-aspect target classification and detection with hidden Markov models[C]. International Conference on Acoustics, Speech and Signal Processing, Montreal, 2004: 125-129.
|
GREGOR K, DANIHELKA I, GRAVES A, et al. DRAW: A recurrent neural network for image generation[C]. Proceedings of the 32nd International Conference on Machine Learning, Lille, 2015: 1-8.
|
ZAREMBA W and SUTSKEVER I. Recurrent neural network regularization[C]. International Conference on Learning Representations, San Diego, 2015: 1-8.
|
SRIVASTAVE N, MANSIMOV E, and SALAKHUTDINOV R. Unsupervised learning of video representations using LSTMs[C]. Proceedings of the 32nd International Conference on Machine Learning, Lille, 2015: 1-9.
|
LI J W, LUONG M T, and JURAFSKY D. A hierarchical neural autoencoder for paragraphs and documents[C]. Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing, Beijing, 2015: 1106-1115.
|
CHEN J X, YANG L, ZHANG Y Z, et al. Combining fully convolutional and recurrent neural networks for 3D biomedical image segmentation[C]. 29th Conference on Neural Information Processing Systems, Barcelona, 2016: 1-9.
|
ELMAN J L. Finding structure in time[J]. Cognitive Science, 1990, 14(2): 179-211.
|
CHOROWSKI J, BAHDANAU D, SERDYUK D, et al. Attention-based models for speech recognition[C]. 27th Conference on Natural Language Processing Systems, Montreal, 2015: 1-19.
|
SU B and LU S J. Accurate scene text recognition based on recurrent neural network[C]. 12th Asian Conference on Computer Vision, Singapore, 2015: 35-48.
|