Citation: | DU Lan, LIU Bin, WANG Yan, LIU Hongwei, DAI Hui. Target Detection Method Based on Convolutional Neural Network for SAR Image[J]. Journal of Electronics & Information Technology, 2016, 38(12): 3018-3025. doi: 10.11999/JEIT161032 |
XING X W, CHEN Z L, ZOU H X, et al. A fast algorithm based on two-stage CFAR for detecting ships in SAR images [C]. The 2nd Asian-Pacific Conference on Synthetic Aperture Radar, Xian, China, 2009: 506-509.
|
LENG X, JI K, YANG K, et al. A bilateral CFAR algorithm for ship detection in SAR images[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(7): 1536-1540. doi: 10.1109 /LGRS.2015.2412174.
|
JI Y, ZHANG J, MENG J, et al. A new CFAR ship target detection method in SAR imagery[J]. Acta Oceanologica Sinica, 2010, 29(1): 12-16.
|
ELDHUSET K. An automatic ship and ship wake detection system for spaceborne SAR images in coastal regions[J]. IEEE Transactions on Geoscience and Remote Sensing, 1996, 34(4): 1010-1019. doi: 10.1109/36.508418.
|
KRIZHEVSKY A, SUTSKEVER I, and HINTON G E. Imagenet classification with deep convolutional neural networks[C]. Advances in Neural Information Processing Systems, Lake Tahoe, Nevada, USA, 2012: 1097-1105.
|
SZEGEDY C, LIU W, JIA Y, et al. Going deeper with convolutions[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, Massachusetts, USA, 2015: 1-9.
|
ZHANG X, ZOU J, MING X, et al. Efficient and accurate approximations of nonlinear convolutional networks[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Boston, Massachusetts, USA, 2015: 1984-1992.
|
HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]. Computer Vision and Pattern Recognition, Las Vegas, Nevada, USA, 2016: 770-778.
|
ZEILER M D and FERGUS R. Visualizing and understanding convolutional networks[C]. European Conference on Computer Vision. Springer International Publishing, Zurich, Swizterland, 2014: 818-833.
|
GOODFELLOW I J, WARDE Farley D, MIRZA M, et al. Maxout networks[J]. International Conference on Machine Learning, 2013, 28(3): 1319-1327.
|
HE K, ZHANG X, REN S, et al. Delving deep into rectifiers: Surpassing human-level performance on imagenet classification[C]. International Conference on Computer Vision, Santiago, Chile, 2015: 1026-1034.
|
GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, Ohio, USA, 2014: 580-587.
|
GIRSHICK R. Fast R-CNN[C]. Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 2015: 1440-1448.
|
REN S, HE K, GIRSHICK R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[C]. Advances in Neural Information Processing Systems, Montral, Canada, 2015: 91-99.
|
IOFFE S and SZEGEDY C. Batch normalization: accelerating deep network training by reducing internal covariate shift[C]. International Conference on Machine Learning, Lille, France, 2015: 448-456.
|
LONG J, SHELHAMER E, and DARRELL T. Fully convolutional networks for semantic segmentation[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, Massachusetts, USA, 2015: 3431-3440.
|
GAO G, LIU L, ZHAO L, et al. An adaptive and fast CFAR algorithm based on automatic censoring for target detection in high-resolution SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(6): 1685-1697. doi: 10.1109/TGRS.2008.2006504.
|