Advanced Search
Volume 38 Issue 12
Jan.  2017
Turn off MathJax
Article Contents
ZHANG Lamei, DUAN Baolong, ZOU Bin. Research Development on Target Decomposition Method of Polarimetric SAR Image[J]. Journal of Electronics & Information Technology, 2016, 38(12): 3289-3297. doi: 10.11999/JEIT160992
Citation: ZHANG Lamei, DUAN Baolong, ZOU Bin. Research Development on Target Decomposition Method of Polarimetric SAR Image[J]. Journal of Electronics & Information Technology, 2016, 38(12): 3289-3297. doi: 10.11999/JEIT160992

Research Development on Target Decomposition Method of Polarimetric SAR Image

doi: 10.11999/JEIT160992
Funds:

The National Natural Science Foundation of China (61401124), The Postdoctoral Scientific Research Developmental Foundation of Heilongjiang Province (LBH- Q13069)

  • Received Date: 2016-09-29
  • Rev Recd Date: 2016-11-14
  • Publish Date: 2016-12-19
  • Polarimetric Synthetic Aperture Radar (Polarimetric SAR) has become a hot research topic in the field of remote sensing with the rapid development in recent years. Polarimetric target decomposition is a basic method for Polarimetric SAR image analysis, and plays a key role in Polarimetric SAR image interpretation, the extracted features from polarimetric target decomposition is the basis of target detection and image classification using Polarimetric SAR image. In this paper, through expositing the development of polarimetric target decomposition as well as the new technologies in recent years comprehensively, the relevant researchers can understand the latest progress in this field clearly.
  • loading
  • 王振力, 钟海. 国外先进星载SAR卫星的发展现状及应用[J]. 国防科技, 2016, 37(1): 19-24. doi: 10.13943/j.issn1671-4547. 2016.01.06.
    WANG Zhenli and ZHONG Hai. The nowadays development and application of oversea advanced space borne SARS[J]. National Defense Science Technology, 2016, 37(1): 19-24. doi: 10.13943/j.issn1671-4547.2016.01.06.
    CHEN F, LASAPONARA R, and MASINI N. An overview of satellite synthetic aperture radar remote sensing in archaeology: From site detection to monitoring[J]. Journal of Cultural Heritage, 2015, 2015: 1-7. doi: 10.1016/j.culher. 2015.05.003.
    YANG J, YAMAGUCHI Y, LEE J S, et al. Applications of polarimetric SAR[J]. Journal of Sensors, 2015, 2015: 1-2. doi: 10.1155/2015/316391.
    陈曦, 吴涛, 陶利, 等. 极化SAR发展需求及其目标识别关键技术[J]. 科技视界, 2015, (16): 21-22.
    CHEN Xi, WU Tao, TAO Li, et al. Development needs of polarimetric SAR and key technology of target recognition[J]. Science Technology Vision, 2015, (16): 21-22.
    JAWAK S D, BIDAWE T G, and LUIS A J. A review on applications of imaging synthetic aperture radar with a special focus on cryospheric studies[J]. Advances in Remote Sensing, 2015, 4(2): 163-175. doi: 10.4236/ars.2015.42014.
    KROGAGER E. Aspects of polarimetric radar imaging[D]. [Ph.D. dissertation], TUD, Lyngby, Denmark, 1993.
    KROGAGER E and CZYZ Z H. Properties of the sphere, diplane, helix decomposition[C]. Proceedings of JIPR'95, Nantes, France, 1995: 106-114.
    CAMERON W L and LEUNG L K. Feature motivated polarization scattering matrix decomposition[C]. IEEE International Radar Conference, Arlington, VA, 1990: 549-557.
    CAMERON W L, YOUSSEF N N, and LEUNG L K. Simulated polarimetric signatures of primitive geometrical shapes[J]. IEEE Transactions on Geoscience and Remote Sensing, 1996, 34(3): 793-803.
    TOUZI R. Characterization of target symmetric scattering using polarimetric SARs[J]. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40(11): 2507-2516.
    TOUZI R. Target scattering decomposition of one-look and multi-look SAR data using a new coherent scattering model: The TSVM[C]. IEEE International Geosience and Remote Sensing Symposium, Alaska, USA, 2004: 2491-2494.
    CLOUDE S R and POTTIER E. A review of target decomposition theorems in radar polarimetry[J]. IEEE Transactions on Geoscience and Remote Sensing, 1996, 34(2): 498-518.
    PALADINI R, MARTORELLA M, and BERIZZI F. Classification of man-made targets via invariant coherency- matrix eigenvector decomposition of polarimetric SAR/ISAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(8): 3022-3034. doi: 10.1109/TGRS.2011. 2116121.
    PALADINI R, FERRO F L, POTTIER E, et al. Lossless and sufficient-invariant decomposition of random reciprocal target[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(9): 3487-3501. doi: 10.1109/TGRS.2011. 2181397.
    FREEMAN A. Calibration of linearly polarized polarimetric SAR data subject to faraday rotation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2004, 42(8): 1617-1624. doi: 10.1109/TGRS.2004.830161.
    ZOU B, LU D, ZHANG L, et al. Eigen-decomposition-based four-component decomposition for PolSAR data[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016, 9(3): 1286-1296. doi: 10.1109/ JSTARS.2015.2513161.
    HUYNEN J R. Phenomenological theory of radar targets[D]. [Ph.D. dissertation], University of Technology, 1970.
    VAN ZYL J J. Unsupervised classification of scattering behavior using radar polarimetry data[J]. IEEE Transactions on Geoscience and Remote Sensing, 1989, 27(1): 36-45.
    DONG Y, FROSTER B C, and TICEHURST C. A new decomposition of radar polarization signatures[J]. IEEE Transactions on Geoscience and Remote Sensing, 1998, 36(3): 933-939.
    王之禹, 朱敏惠, 白有天. 基于散射模型的极化SAR数据分解[J]. 电子与信息学报, 2001, 23(10): 954-961.
    WANG Zhiyu, ZHU Minhui, and BAI Youtian. Decomposition of Polarimetric SAR data model[J]. Journal of Electronics Information Technology, 2001, 23(10): 954-961.
    CLOUDE S R and POTTIER E. An entropy based classification scheme for land applications of polarimetric SAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 1997, 35(1): 68-78.
    AN W, CUI Y, YANG J, et al. Fast alternatives to H/alpha for polarimetric SAR[J]. IEEE Geoscience and Remote Sensing Letters, 2010, 7(2): 343-347. doi: 10.1109/LGRS.2009. 2035135.
    HOLM W A and BAMES R M. On radar polarization mixed target state decomposition techniques[C]. Proceedings of the IEEE National Radar Conference, Dallas, Texas, USA, 1988: 249-254.
    VAN ZYL J J. Application of Cloudes target decomposition theorem to polarimetric imaging radar data[C]. Proceedings of SPIE - The International Society for Optical Engineering, San Diego, CA, USA, 1993: 184-191.
    AINSWORTH T L, CLOUDE S R, and LEE J S. Eigenvector analysis of polarimetric SAR data[C]. IEEE International Geosience and Remote Sensing Symposium, Toronto, Canada, 2002, Vol.1: 626-628.
    FREEMAN A and DURDEN S. A Three-component scattering model to describe polarimetric SAR data[C]. Proceedings SPZE Conference on Radar Polarimetry, San Diego, CA, USA, 1993: 213-224.
    MORIYAMA T, URATSUKA S, UMEHARA T, et al. Polarimetric SAR image analysis using model fit for urban structures[J]. IEICE Transactions on Communications, 2005, 88(3): 1234-1243.
    YAMAGUCHI Y, MORIYAMA T, ISHIDO M, et al. Four-component scattering model for polarimetric SAR image decomposition[J]. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(8): 1699-1706. doi: 10.1109/TGRS. 2005.852084.
    ZHANG L, ZOU B, CAI H, et al. Multiple-component scattering model for polarimetric SAR image decomposition [J]. IEEE Geoscience and Remote Sensing Letters, 2008, 5(4): 603-607. doi: 10.1109/LGRS.2008.2000795.
    LEE J S, AINSWORTH T L, and WANG Y. Recent advances in scattering model-based decompositions: An overview[C]. IEEE International Geoscience Remote Sensing Symposium (IGARSS'11), Vancouver, BC, Canada, 2011: 9-12.
    ANTROPOV O, RAUSTE Y, and HAME T. Volume scattering modeling in PolSAR decompositions: Study of ALOS PALSAR data over boreal forest[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(10): 3838-3848. doi: 10.1109/TGRS.2011.2138146.
    ARII M, VAN ZYL J J, and KIM Y. Adaptive model-based decomposition of polarimetric SAR covariance matrices[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(3): 1104-1113. doi: 10.1109/TGRS.2010.2076285.
    VAN ZYL J J, ARII M, and KIM Y. Model-based decomposition of polarimetric SAR covariance matrices constrained for nonnegative eigenvalues[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(9): 3452-3459. doi: 10.1109/TGRS.2011.2128325.
    刘高峰, 李明, 王亚军, 等. 基于层次非负特征值约束的Yamaguchi分解[J]. 电子与信息学报, 2013, 35(11): 2678-2685. doi: 10.3724/SP.J.1146.2012.01381.
    LIU Gaofeng, LI Ming, WANG Yajun, et al. Yamaguchi decomposition based on hierarchical nonnegative eigenvalue restriction[J]. Journal of Electronics Information Technology, 2013, 35(11): 2678-2685. doi: 10.3724/SP.J.1146. 2012.01381.
    WANG C, YU W, WANG R, et al. Comparison of nonnegative eigenvalue decompositions with and without reflection symmetry assumptions[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(4): 2278-2287. doi: 10.1109/TGRS.2013.2259177.
    蔡永俊, 张祥坤, 姜景山. 极化SAR自适应三分量分解方法[J]. 测绘学报, 2016, 45(9): 1089-1095. doi: 10.11947/j.AGCS. 2016.20150533.
    CAI Yongjun, ZHANG Xiangkun, and JIANG Jingshan. Adaptive three-component decomposition approach for polarimetric SAR data[J]. Acta Geodaetica et Cartographica Sinica, 2016, 45(9): 1089-1095. doi: 10.11947/j.AGCS.2016. 20150533.
    AN W, CUI Y, and YANG J. Three-component model-based decomposition for polarimetric SAR data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(6): 2732-2739. doi: 10.1109/TGRS.2010.2041242.
    YAMAGUCHI Y, SATO A, BOERNER W M, et al. Four-component scattering power decomposition with rotation of coherency matrix[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(6): 2251-2258.
    SUGIMOTO M, OUCHI K, and NAKAMURA Y. Four-component scattering power decomposition algorithm with rotation of covariance matrix using ALOS-PALSAR polarimetric data[J]. Remote Sensing, 2012, 4(8): 2199-2209. doi: 10.3390/rs4082199.
    CHEN S W, WANG X S, XIAO S P, et al. General polarimetric model-based decomposition for coherency matrix[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(3): 1843-1855.
    BHATTACHARYA A, MUHURI A, DE S, et al. Modifying the yamaguchi four-component decomposition scattering powers using a stochastic distance[J]. IEEE Journal of Selected Topics in Applied Earth Observations Remote Sensing, 2015, 8(7): 3497-3506. doi: 10.1109/JSTARS.2015. 2420683.
    闫丽丽, 张继贤, 高井祥, 等. 一种适合方位建筑物的基于物理散射模型的极化SAR影像四分量分解方法[J]. 电子学报, 2015, 43(1): 203-208. doi: 10.3969/j.issn.0372-2112.2015.01. 032.
    YAN Lili, ZHANG Jixian, GAO Jingxiang, et al. Four- Component model-based decomposition of Polarimetric SAR data for oriented urban buildings[J]. Acta Electronica Sinica, 2015, 43(1): 203-208. doi: 10.3969/j.issn.0372-2112.2015.01. 032.
    SHUANG Z, SHUANG W, LI-CHENG R, et al. A novel hybrid Freeman/eigenvalue decomposition with general scattering models[J]. Journal of Infrared Millimeter Waves, 2015, 34(3): 265-270. doi: 10.11972/j.issn.1001-9014.2015.03. 002.
    车美琴, 阿里木赛买提, 杜培军, 等. 利用旋转不变特征提取全极化SAR影像人工地物[J]. 遥感学报, 2016, 20(2): 303-314. doi: 10.11834/jrs.20165098.
    CHE Meiqin, SAMAT A, DU Peijun, et al. Urban man-made target extraction from Quad-PolSAR imagery with roll-invariant parameters[J]. Journal of Remote Sensing, 2016, 20(2): 303-314. doi: 10.11834/jrs.20165098.
    范庆辉, 卢红喜, 保铮, 等. 基于半正定约束的极化相似度最优模型匹配目标分解[J]. 电子与信息学报, 2015, 37(8): 1821-1827. doi: 10.11999/JEIT141468.
    FAN Qinghui, LU Hongxi, BAO Zheng, et al. Positive- semidefinite based target decomposition using optimal model-matching with polarization similarity[J]. Journal of Electronics Information Technology, 2015, 37(8): 1821-1827. doi: 10.11999/JEIT141468.
    殷君君, 安文韬, 杨健, 等. 一种改进的极化SAR图像四成分分解方法[J]. 信息与电子工程, 2011, 9(2): 127-132.
    YIN Junjun, AN Wentao, YANG Jian, et al. A modified four- component model-based scattering decomposition method of polarimetric SAR images[J]. Information Electronic Engineering, 2011, 9(2): 127-132.
    李春升, 王伟杰, 王鹏波, 等. 星载SAR技术的现状与发展趋势[J]. 电子与信息学报, 2016, 38(1): 229-240. doi: 10.11999/ JEIT151116.
    LI Chunsheng, WANG Weijie, WANG Pengbo, et al. Current situation and development trends of spaceborne SAR technology[J]. Journal of Electronics Information Technology, 2016, 38(1): 229-240. doi: 10.11999/JEIT151116.
    BOERNER W M. The development of multi-band equatorial orbiting POLSAR satellite sensors[C]. IEEE International Conference on Aerospace Electronics Remotes Sensing Technology, Yogyakarta, Indonesia, 2014: 127-131.
    BALLESTER-BERMAN J D and LOPEZ-SANCHEZ J M. Applying the Freeman-Durden decomposition concept to polarimetric SAR interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(1): 466-479. doi: 10.1109/TGRS.2009.2024304.
    MINH N P, ZOU B, CAI H, et al. Forest height estimation from mountain forest areas using general model-based decomposition for PolInSAR image[J]. Journal of Applied Remote Sensing, 2014, 8(1): 083676, doi: 10.1117/1.JRS.8. 083676.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1690) PDF downloads(682) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return