Advanced Search
Volume 39 Issue 9
Sep.  2017
Turn off MathJax
Article Contents
SUN Xiao, PENG Xiaoqi, HU Min, REN Fuji. Extended Multi-modality Features and Deep Learning Based Microblog Short Text Sentiment Analysis[J]. Journal of Electronics & Information Technology, 2017, 39(9): 2048-2055. doi: 10.11999/JEIT160975
Citation: SUN Xiao, PENG Xiaoqi, HU Min, REN Fuji. Extended Multi-modality Features and Deep Learning Based Microblog Short Text Sentiment Analysis[J]. Journal of Electronics & Information Technology, 2017, 39(9): 2048-2055. doi: 10.11999/JEIT160975

Extended Multi-modality Features and Deep Learning Based Microblog Short Text Sentiment Analysis

doi: 10.11999/JEIT160975
Funds:

The National Natural Science Foundation of China (61432004), The Open Project Program of the National Laboratory of Pattern Recognition (NLPR) (201407345), The Natural Science Foundation of Anhui Province (1508085QF119), The China Postdoctoral Science Foundation (2015M580532)

  • Received Date: 2016-09-28
  • Rev Recd Date: 2017-05-17
  • Publish Date: 2017-09-19
  • This paper presents a Deep Belief Nets (DBN) model and a multi-modality feature extraction method to extend features, dimensionalities of short text for Chinese microblogging sentiment classification. Besides traditional features sets for document classification, comments for certain posts are also extracted as part of the microblogging features according to the relationship between commenters and posters through constructing microblogging social network as input information. Multi-modality features are combined and adopted as the input vector for DBN. A DBN model, which is stacked with several layers of Restricted Boltzmann Machine (RBM), is implemented to initialize the structure of neural network. The RBM layers can take probability distribution samples of input data to learn hidden syntactic structures for better feature representation. A Classification RBM (ClassRBM) layer, which is stacked on top of the former RBM layers, is adapted to achieve the final sentiment classification. The results demonstrate that, with proper structure and parameter, the performance of the proposed deep learning method on sentiment classification is better than the state of the art surface learning models such as SVM or NB, which proves that DBN is suitable for short-length document classification with the proposed feature dimensionality extension method.
  • loading
  • 刘斌, 黄铁军, 程军, 等. 一种新的基于统计的自动文本分类方法[J]. 中文信息学报, 2002, 16(6): 18-24.
    LIU Bin, HUANG Tiejun, CHENG Jun, et al. The automatic text classification method based on statistics[J]. Journal of Chinese Information Processing, 2002, 16(6): 18-24. doi: 10.3969/j.issn.1003-0077.2002.06.003.
    覃晓, 元昌安, 彭昱忠, 等. 基于词典和遗传算法的文本特征获取方法[J]. 计算机工程与设计, 2008, 29(21): 5651-5654.
    QIN Xiao, YUAN Chang,an, PENG Yuzhong, et al. Based on the dictionary method and genetic algorithm for text feature extraction[J]. Computer Engineering and Design, 2008, 29(21): 5651-5654.
    胡侯立, 魏维, 胡蒙娜. 深度学习算法的原理及应用[J]. 信息技术, 2015(2): 175-177. doi: 10.13274/j.cnki.hdzj.2015.02. 045.
    HU Houli, WEI Wei, and HU Mengna. The principle and application of deep learning algorithm[J]. Information Technology, 2015(2): 175-177. doi: 10.13274/j.cnki.hdzj.2015. 02.045.
    王荣波, 谌志群, 周建政, 等. 基于Wikipedia的短文本语义相关度计算方法[J]. 计算机应用与软件, 2015, 32(1): 82-85. doi: 10.3969/j.issn.1000-386x.2015.01.021.
    WANG Rongbo, SHEN Zhiqun, ZHOU Jianzheng, et al. Short text semantic relatedness calculation method based on Wikipedia[J]. Computer Applications and Software, 2015, 32(1): 82-85. doi: 10.3969/j.issn.1000-386x.2015.01.021.
    GLOROT X, BORDES A, and BENGIO Y. Domain adaptation for large-scale sentiment classification: A deep learning approach[C]. Proceedings of the 28 International Conference on Machine Learning, Bellevue, WA, USA, 2011: 513-520.
    SAIF H, HE Y, ALANI H, et al. On stopwords, filtering and data sparsity for sentiment analysis of twitter[C]. The International Conference on Language Resources and Evaluation, Reykjavik, Iceland, 2014: 810-817.
    XIA R, XU F, YU J, et al. Polarity shift detection, elimination and ensemble: A three-stage model for document- level sentiment analysis[J]. Information Processing Management, 2015, 52(1): 36-45. doi: 10.1016/j.ipm.2015.04. 003.
    PEISENIEKS J, SKADIN R, and PEISENIEKS J. Uses of machine translation in the sentiment analysis of tweets[C]. Human Language Technologies-the Baltic Perspective, Kaunas, Lithuania, 2014: 126-131. doi: 10.3233/978-1-61499- 442-8-126.
    SUBRAHMANIAN and REFORGIATO D. AVA: Adjective- verb-adverb combinations for sentiment analysis[J]. IEEE Intelligent Systems, 2008, 23(4): 43-50. doi: 10.1109/MIS. 2008.57.
    NARENDRA B, SAI K U, RAJESH G, et al. Sentiment analysis on movie reviews: A comparative study of machine learning algorithms and open source technologies[J]. International Journal of Intelligent Systems Technologies and Applications, 2016, 8(8): 66-70. doi: 10.5815/ijisa.2016.08.08.
    WU F and HUANG Y. Collaborative multi-domain sentiment classification[C]. IEEE International Conference on Data Mining, Atlantic City, NJ, USA, 2015: 459-468. doi: 10.1109/ICDM.2015.68.
    ZHENG W L, ZHU J Y, PENG Y, et al. EEG-based emotion classification using deep belief networks[C]. IEEE International Conference on Multimedia and Expo, Chengdu, China, 2014: 1-6. doi: 10.1109/ICME.2014.6890166.
    PSOMAKELIS E, TSERPES K, ANAGNOSTOPOULOS D, et al. Comparing methods for twitter sentiment analysis[C]. International Conference on Knowledge Discovery and Information Retrieval. Rome, Italy, 2015: 225-232. doi: 10.5220/0005075302250232.
    BRAVO-MARQUEZ F, MENDOZA M, and POBLETE B, Combining strengths, emotions and polarities for boosting twitter sentiment analysis[C]. Workshop on Issues of Sentiment Discovery and Opinion Mining, New York, NY, USA, 2013: 1-9. doi: 10.1145/2502069.2502071.
    XU K, FENG Y, HUANG S, et al. Semantic relation classification via convolutional neural networks with simple negative sampling[J]. Computer Science, 2015, 71(7): 941-950. doi: 10.18653/v1/D15-1062.
    SANTOS C N D and GATTIT M. Deep convolutional neural networks for sentiment analysis of short texts[C]. International Conference on Computational Linguistics, Dublin, Ireland, 2014: 69-78.
    ZHAI S and ZHANG Z. Semisupervised autoencoder for sentiment analysis[J]. Computer Science, 2015, 64(8): 1570-1582. doi: 10.1080/03081087.2015.1107020.
    SOCHER R, HUVAL B, MANNING D, et al. Semantic compositionality through recursive matrix-vector spaces[C]. Proceedings of the Conference on Empirical Methods in Natural Language Processing, Jeju Island, Korea, 2012: 1201-1211.
    MIDHUN M E, NAIR S R, PRABHAKAR V T N, et al. Deep model for classification of hyperspectral image using restricted Boltzmann machine[C]. International Conference on Interdisciplinary Advances in Applied Computing, New York, NY, USA, 2014: 1-7. doi: 10.1145/2660859.2660946.
    WANG Y, ZHAO S, QU D, et al. Using conditional restricted Boltzmann machines for spectral envelope modeling in speech bandwidth extension[C]. IEEE International Conference on Acoustics, Speech and Signal Processing, Shanghai, China, 2016: 5930-5934. doi: 10.1109/ICASSP.2016.7472815.
    CHEN F, WU Y, BU Y, et al. Spectral classification using restricted Boltzmann machine[J]. Publications of the Astronomical Society of Australia, 2014, 31(31): 386-406. doi: 10.1017/pasa.2013.38.
    TRIPATHY A, AGRAWAL A, and RATH S K. Classification of sentiment reviews using n-gram machine learning approach[J]. Expert Systems with Applications, 2016, 57: 117-126. doi: 10.1016/j.eswa.2016.03.028.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1735) PDF downloads(678) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return