Citation: | SUN Xiao, PENG Xiaoqi, HU Min, REN Fuji. Extended Multi-modality Features and Deep Learning Based Microblog Short Text Sentiment Analysis[J]. Journal of Electronics & Information Technology, 2017, 39(9): 2048-2055. doi: 10.11999/JEIT160975 |
刘斌, 黄铁军, 程军, 等. 一种新的基于统计的自动文本分类方法[J]. 中文信息学报, 2002, 16(6): 18-24.
|
LIU Bin, HUANG Tiejun, CHENG Jun, et al. The automatic text classification method based on statistics[J]. Journal of Chinese Information Processing, 2002, 16(6): 18-24. doi: 10.3969/j.issn.1003-0077.2002.06.003.
|
覃晓, 元昌安, 彭昱忠, 等. 基于词典和遗传算法的文本特征获取方法[J]. 计算机工程与设计, 2008, 29(21): 5651-5654.
|
QIN Xiao, YUAN Chang,an, PENG Yuzhong, et al. Based on the dictionary method and genetic algorithm for text feature extraction[J]. Computer Engineering and Design, 2008, 29(21): 5651-5654.
|
胡侯立, 魏维, 胡蒙娜. 深度学习算法的原理及应用[J]. 信息技术, 2015(2): 175-177. doi: 10.13274/j.cnki.hdzj.2015.02. 045.
|
HU Houli, WEI Wei, and HU Mengna. The principle and application of deep learning algorithm[J]. Information Technology, 2015(2): 175-177. doi: 10.13274/j.cnki.hdzj.2015. 02.045.
|
王荣波, 谌志群, 周建政, 等. 基于Wikipedia的短文本语义相关度计算方法[J]. 计算机应用与软件, 2015, 32(1): 82-85. doi: 10.3969/j.issn.1000-386x.2015.01.021.
|
WANG Rongbo, SHEN Zhiqun, ZHOU Jianzheng, et al. Short text semantic relatedness calculation method based on Wikipedia[J]. Computer Applications and Software, 2015, 32(1): 82-85. doi: 10.3969/j.issn.1000-386x.2015.01.021.
|
GLOROT X, BORDES A, and BENGIO Y. Domain adaptation for large-scale sentiment classification: A deep learning approach[C]. Proceedings of the 28 International Conference on Machine Learning, Bellevue, WA, USA, 2011: 513-520.
|
SAIF H, HE Y, ALANI H, et al. On stopwords, filtering and data sparsity for sentiment analysis of twitter[C]. The International Conference on Language Resources and Evaluation, Reykjavik, Iceland, 2014: 810-817.
|
XIA R, XU F, YU J, et al. Polarity shift detection, elimination and ensemble: A three-stage model for document- level sentiment analysis[J]. Information Processing Management, 2015, 52(1): 36-45. doi: 10.1016/j.ipm.2015.04. 003.
|
PEISENIEKS J, SKADIN R, and PEISENIEKS J. Uses of machine translation in the sentiment analysis of tweets[C]. Human Language Technologies-the Baltic Perspective, Kaunas, Lithuania, 2014: 126-131. doi: 10.3233/978-1-61499- 442-8-126.
|
SUBRAHMANIAN and REFORGIATO D. AVA: Adjective- verb-adverb combinations for sentiment analysis[J]. IEEE Intelligent Systems, 2008, 23(4): 43-50. doi: 10.1109/MIS. 2008.57.
|
NARENDRA B, SAI K U, RAJESH G, et al. Sentiment analysis on movie reviews: A comparative study of machine learning algorithms and open source technologies[J]. International Journal of Intelligent Systems Technologies and Applications, 2016, 8(8): 66-70. doi: 10.5815/ijisa.2016.08.08.
|
WU F and HUANG Y. Collaborative multi-domain sentiment classification[C]. IEEE International Conference on Data Mining, Atlantic City, NJ, USA, 2015: 459-468. doi: 10.1109/ICDM.2015.68.
|
ZHENG W L, ZHU J Y, PENG Y, et al. EEG-based emotion classification using deep belief networks[C]. IEEE International Conference on Multimedia and Expo, Chengdu, China, 2014: 1-6. doi: 10.1109/ICME.2014.6890166.
|
PSOMAKELIS E, TSERPES K, ANAGNOSTOPOULOS D, et al. Comparing methods for twitter sentiment analysis[C]. International Conference on Knowledge Discovery and Information Retrieval. Rome, Italy, 2015: 225-232. doi: 10.5220/0005075302250232.
|
BRAVO-MARQUEZ F, MENDOZA M, and POBLETE B, Combining strengths, emotions and polarities for boosting twitter sentiment analysis[C]. Workshop on Issues of Sentiment Discovery and Opinion Mining, New York, NY, USA, 2013: 1-9. doi: 10.1145/2502069.2502071.
|
XU K, FENG Y, HUANG S, et al. Semantic relation classification via convolutional neural networks with simple negative sampling[J]. Computer Science, 2015, 71(7): 941-950. doi: 10.18653/v1/D15-1062.
|
SANTOS C N D and GATTIT M. Deep convolutional neural networks for sentiment analysis of short texts[C]. International Conference on Computational Linguistics, Dublin, Ireland, 2014: 69-78.
|
ZHAI S and ZHANG Z. Semisupervised autoencoder for sentiment analysis[J]. Computer Science, 2015, 64(8): 1570-1582. doi: 10.1080/03081087.2015.1107020.
|
SOCHER R, HUVAL B, MANNING D, et al. Semantic compositionality through recursive matrix-vector spaces[C]. Proceedings of the Conference on Empirical Methods in Natural Language Processing, Jeju Island, Korea, 2012: 1201-1211.
|
MIDHUN M E, NAIR S R, PRABHAKAR V T N, et al. Deep model for classification of hyperspectral image using restricted Boltzmann machine[C]. International Conference on Interdisciplinary Advances in Applied Computing, New York, NY, USA, 2014: 1-7. doi: 10.1145/2660859.2660946.
|
WANG Y, ZHAO S, QU D, et al. Using conditional restricted Boltzmann machines for spectral envelope modeling in speech bandwidth extension[C]. IEEE International Conference on Acoustics, Speech and Signal Processing, Shanghai, China, 2016: 5930-5934. doi: 10.1109/ICASSP.2016.7472815.
|
CHEN F, WU Y, BU Y, et al. Spectral classification using restricted Boltzmann machine[J]. Publications of the Astronomical Society of Australia, 2014, 31(31): 386-406. doi: 10.1017/pasa.2013.38.
|
TRIPATHY A, AGRAWAL A, and RATH S K. Classification of sentiment reviews using n-gram machine learning approach[J]. Expert Systems with Applications, 2016, 57: 117-126. doi: 10.1016/j.eswa.2016.03.028.
|