Citation: | LIU Jiefang, WANG Shitong, WANG Jun, DENG Zhaohong. Bayesian Possibilistic Clustering Method with Optimality Guarantees[J]. Journal of Electronics & Information Technology, 2017, 39(7): 1554-1562. doi: 10.11999/JEIT160908 |
BARNI M, CAPPELLINI V, and MECOCCI A. Comments on a possibilistic approach to clustering[J]. IEEE Transactions on Fuzzy Systems, 1996, 4(3): 393-396.
|
PAL N R, PAL K, and BEZDEK J C. A mixed c-means clustering model[C]. Proceedings of the Sixth IEEE International Conference on Fuzzy Systems, Barcelona, Spain, 1997: 11-21.
|
PAL N R, PAL K, KELLER J M, et al. A possibilistic fuzzy c-means clustering algorithm[J]. IEEE Transactions on Fuzzy Systems, 2005, 13(4): 517530. doi: 10.1109/tfuzz. 2004.840 099.
|
KRISHNAPURAM R and KELLER J M. The possibilistic c-means algorithm: Insights and recommendations[J]. IEEE Transactions on Fuzzy Systems, 1996, 4(3): 385-393.
|
ZHANG J S and LEUNG Y W. Improved possibilistic c-means clustering algorithms[J]. IEEE Transactions on Fuzzy Systems, 2004, 12(2): 209-217. doi: 10.1109/tfuzz. 2004.825079.
|
YANG M S and LAI C Y. A robust automatic merging possibilistic clustering method[J]. IEEE Transactions on Fuzzy Systems, 2011, 19(1): 26-41. doi: 10.1109/tfuzz.2010. 2077640.
|
范九伦, 裴继红. 基于可能性分布的聚类有效性[J]. 电子学报, 1998, 26(4): 113-115.
|
FAN Jiulun and PEI Jihong. Cluster validity based on possibilistic distribution[J]. Acta Electronica Sinica, 1998, 26(4): 113-115.
|
ZARANDI M H F, AVAZBEIGI M, and ANSSARI M H. New possibilistic noise rejection clustering algorithm with simulated annealing[C]. 2011 Annual Meeting of the North American Fuzzy Information Processing Society, Canada, 2011: 1-5. doi: 10.1109/nafips.2011.5752004.
|
DENG Z H, CAO L B, JIANG Y Z, et al. Minimax probability TSK fuzzy system classifier: A more transparent and highly interpretable classification model[J]. IEEE Transactions on Fuzzy Systems, 2015, 23(4): 813-826. doi: 10.1109/tfuzz.2014.2328014.
|
夏建明, 杨俊安, 陈功. 参数自适应调整的稀疏贝叶斯重构算法[J]. 电子与信息学报, 2014, 36(6): 1355-1361. doi: 10.3724/SP.J.1146.2013.00629.
|
XIA Jianming, YANG Junan, and CHEN Gong. Bayesian sparse reconstruction with adaptive parameters adjustment[J]. Journal of Electronics Information Technology, 2014, 36(6): 1355-1361. doi: 10.3724/SP.J.1146. 2013.00629.
|
王峰, 向新, 易克初, 等. 基于隐变量贝叶斯模型的稀疏信号恢复[J]. 电子与信息学报, 2015, 37(1): 97-102. doi: 10.11999/ JEIT140169.
|
WANG Feng, XIANG Xin, YI Kechu, et al. Sparse signals recovery based on latent variable Bayesian models[J]. Journal of Electronics Information Technology, 2015, 37(1): 97-102. doi: 10.11999/JEIT140169.
|
WANG S T, CHUNG K F, SHEN H B, et al. Note on the relationship between probabilistic and fuzzy clustering[J]. Soft Computing, 2004, 8(5): 366-369. doi: 10.1007/s00500- 003-0309-8.
|
YU L, WEI C, and ZHENG G. Adaptive Bayesian estimation with cluster structured sparsity[J]. IEEE Signal Processing Letters, 2015, 22(12): 2309-2313. doi: 10.1109 /lsp.2015. 2477440.
|
GLENN T C, ZARE A, and GADER P D. Bayesian fuzzy clustering[J]. IEEE Transactions on Fuzzy Systems, 2015, 23(5): 1545-1561. doi: 10.1109/tfuzz.2014.2370676.
|
ZARINBAL M, ZARANDI M H F, and TURKSEN I B. Relative entropy fuzzy c-means clustering[J]. Information Sciences, 2014, 260: 74-97. doi: 10.1016/j.ins.2013.11.004.
|
BEZDEK J C, EHRLICH R, and FULL W. FCM: The fuzzy c-means clustering algorithm[J]. Computers Geosciences, 1984, 10(2-3): 191203.
|
KRISHNAPURAM R and KELLER J M. A Possibilistic approach to clustering[J]. IEEE Transactions on Fuzzy Systems, 1993, 1(2): 98-110.
|
ANDRIEU C, DE FREITAS N, DOUCET A, et al. An introduction to MCMC for machine learning[J]. Machine Learning, 2003, 50(1): 5-43. doi: 10.1023/A:1020281327116.
|
CHIB S and GREENBERG E. Understanding the metropolis-hastings algorithm[J]. The American Statistician, 1995, 49(4): 327-335.
|
PLUMMER M, BEST N, COWLES K, et al. CODA: Convergence diagnosis and output analysis for MCMC[J]. R News, 2006, 6(1): 7-11.
|
朱崇军. MCMC样本确定的后验密度的收敛性[J]. 数学杂志, 2002, 22(3): 345-348. doi: 10.3969/j.issn.0255-7797.2002. 03.019.
|
ZHU Chongjun. On the convergences of a posteriori density determined by MCMC samplers[J]. Journal of Math ematics, 2002, 22(3): 345-348. doi: 10.3969/j.issn.0255-7797.2002. 03.019.
|
ROBERTS G O and SMITH A F M. Simple conditions for the convergence of the Gibbs sampler and Metropolis- Hastings algorithms[J]. Stochastic Processes and Their Applications, 1994, 49(2): 207216.
|
ZELLNER A and MIN C K. Gibbs sampler convergence criteria[J]. Journal of the American Statistical Association, 1995, 90(431): 921-927.
|
LIU T, YUAN Z, SUN J, et al. Learning to detect a salient object[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(2): 353-367. doi: 10.1109/ tpami.2010.70.
|