Advanced Search
Volume 39 Issue 6
Jun.  2017
Turn off MathJax
Article Contents
LI Weilong, WU Dewei, LU Hu, DU Jia, ZHOU Yang. Bio-inspired Goal-directed Navigation Model Based on Multi-scale Spatial Representation[J]. Journal of Electronics & Information Technology, 2017, 39(6): 1363-1370. doi: 10.11999/JEIT160892
Citation: LI Weilong, WU Dewei, LU Hu, DU Jia, ZHOU Yang. Bio-inspired Goal-directed Navigation Model Based on Multi-scale Spatial Representation[J]. Journal of Electronics & Information Technology, 2017, 39(6): 1363-1370. doi: 10.11999/JEIT160892

Bio-inspired Goal-directed Navigation Model Based on Multi-scale Spatial Representation

doi: 10.11999/JEIT160892
Funds:

The National Natural Science Foundation of China (61273048, 61473308, 61603409)

  • Received Date: 2016-09-02
  • Rev Recd Date: 2017-01-22
  • Publish Date: 2017-06-19
  • In order to achieve spatial cognition and autonomous navigation, enlightened by the mechanism for biological navigation, a bio-inspired goal-directed navigation model based on a multi-scale spatial representation is proposed. First, a place cell map with different scales is constructed for encoding the space environment. Second, the firing rate of place cells in each layer is calculated by the Gaussian function as the input of Q-learning process. Third, the annealing strategy is used to choose a reasonable action. After training and learning, the robot can succeed to plan an optimal route from the starting point to the goal point. Simulation results show that, the proposed method is feasible for goal-directed navigation. Compared with the spatial cognitive model of single scale place cells, the proposed method not only meets the multi-scale spatial representation nature of place cells in hippocampus, but also has a faster learning speed. Additionally, it has good performance on completing the goal- oriented navigation in the presence of obstacles, and can adapt to the change of obstacles in the environment.
  • loading
  • ALEJANDRA B, GONZALO T, MARTIN L, et al. Learning spatial localization: From rat studies to computational models of the hippocampus[J]. Spatial Cognition and Computation: An Interdisciplinary Journal, 2015, 15: 27-59. doi: 10.1080/ 13875868.2014.961602.
    FABIAN C and BURGESS N. The Cognitive architecture of spatial navigation: Hippocampal and striatal contributions[J]. Neuron, 2015, 88(1): 64-77. doi: 10.1016/j.neuron.2015.09. 021.
    RAYMOND P K and EDMUND T R. A computational theory of hippocampal function, and tests of the theory: New developments[J]. Neuroscience and Biobehavioral Reviews, 2015, 48(1): 92-147. doi: 10.1016/j.neubiorev.2014.11.009.
    TOLMAN E C. Cognitive maps in rats and men[J]. Psychological Review, 1948, 55(1): 189-208. doi: 10.1037/ h0061626.
    OKEEFE J and DOSLROVSKV J. The hippocampus as a spatial map[J]. Brain Research, 1971, 34(1): 171-175. doi: 10.1016/0006-8993(71)90358-1.
    OKEEFE J and BURGESS N. Geometric determinants of the place fields of hippocampal neurons[J]. Nature, 1996, 381(6581): 425-428. doi: 10.1038/381425a0.
    BJERKNES T, LANGSTON R, KRUGE I, et al. Coherence among head direction cells before eye opening in rat pups[J]. Current Biology, 2015, 25(1): 103-108. doi: 10.1016/j.cub. 2014.11.009.
    GIOCOMO L M, STENSOLA T, BONNEVIE T, et al. Topography of head direction cells in medial entorhinal cortex[J]. Current Biology, 2014, 24(3): 252-262. doi: 10.1016 /j.cub.2013.12.002.
    HAFTING T, FYHN M, MOLDEN S, et al. Microstructure of a spatial map in the entorhinal cortex[J]. Nature, 2005, 436(7052): 801-806. doi: 10.1038/nature03721.
    DANIEL B, CASWELL B, DANIEL M, et al. Using grid cells for navigation[J]. Neuron, 2015, 87(3): 507-520. doi: 10.1016/ j.neuron.2015.07.006.
    SOLSTAD T, BOCCARA C N, KROPFF E, et al. Representation of geometric borders in the entorhinal cortex[J]. Science, 2009, 322(5909): 1865-1868. doi: 10.1126/ science.1166466.
    EMILIO K, JAMES E C, MOSER M B, et al. Speed cells in the medial entorhinal cortex[J]. Nature, 2015, 523(7561): 419-424. doi: 10.1038/nature14622.
    TAVARES R M, MENDELSOHN A, GROSSMAN Y, et al. A map for social navigation in the human brain[J]. Neuron, 2015, 87(1): 231-243. doi: 10.1016/j.neuron.2015.06.011.
    IOANNIS K, KONSTANTINOS C, ANTONIOS G, et al. Robot navigation via spatial and temporal coherent semantic maps[J]. Engineering Applications of Artificial Intelligence, 2016, 48(1): 173-187. doi: 10.1016/j.engappai.2015.11.004.
    曾毅, 刘成林, 谭铁牛. 类脑智能研究的回顾与展望[J]. 计算机学报, 2016, 39(1): 212-222. doi: 10.11897/SP.J.1016.2016. 00212.
    ZENG Yi, LIU Chenglin, and TAN Tieniu. Retrospect and outlook of brain-inspired intelligence research[J]. Chinese Journal of Computer, 2016, 39(1): 212-222. doi: 10.11897/SP. J.1016.2016.00212.
    李伟龙, 吴德伟, 周阳, 等. 基于生物位置细胞放电机理的空间位置表征方法[J]. 电子与信息学报, 2016, 38(8): 2040-2046. doi: 10.11999/JEIT151331.
    LI Weilong, WU Dewei, Zhou Yang, et al. A method of spatial place representation based on biological place cells firing[J]. Journal of Electronics Information Technology, 2016, 38(8): 2040-2046. doi: 10.11999/JEIT151331.
    SPIERS H J and BARRY C. Neural systems supporting navigation[J]. Current Opinion in Behavioral Sciences, 2015, 1(1): 47-55. doi: 10.1016/j.cobeha.2014.08.005.
    ERDEM U M, MILFORD M J, and HASSELMO M E. A hierarchical model of goal directed navigation selects trajectories in a visual environment[J]. Neurobiology of Learning and Memory, 2015, 117(1): 109-121. doi: 10.1016/ j.nlm.2014.07.003.
    GEVA-SAGIV M, LAS L, YOVEL Y, et al. Spatial cognition in bats and rats: from sensory acquisition to multiscale maps and navigation[J]. Nature Reviews Neuroscience, 2015, 16(2): 94-108. doi: 10.1038/nrn3888.
    KEINATH A T, WANG M E, WANN E G, et al. Precise spatial coding is preserved along the longitudinal hippocampal axis[J]. Hippocampus, 2014, 24(12): 1533-1548. doi: 10.1002/hipo.22333.
    LONG L L, BUNCE J G, and CHROBAK J J. Theta variation and spatiotemporal scaling along the septotemporal axis of the hippocampus[J]. Frontiers in Systems Neuroscience, 2015, 37(9): 1-14. doi: 10.3389/fnsys.2015. 00037.
    ROBITSEK R J, WHITE J A, and EICHENBAUM H. Place cell activation predicts subsequent memory[J]. Behavioural Brain Research, 2013, 254(4): 65-72. doi: 10.1016/j.bbr.2012. 12.034.
    KONAR A, CHAKRABORTY I G, SINGH S J, et al. A deterministic improved q-learning for path planning of a mobile robot[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2015, 43(5): 1141-1153. doi: 10.1109/ TSMCA.2012.2227719.
    CUPERLIER N, QUOY M, and GAUSSIER P. Neurobiologically inspired mobile robot navigation and planning[J]. Frontiers in Neurorobotics, 2007, 1(3): 1-15. doi: 10.3389/neuro.12.003.2007.
    GIOVANNI P, MATTHIJS A A, MEER V D, et al. Internally generated sequences in learning and executing goal-directed behavior[J]. Trends in Cognitive Sciences, 2014, 18(12): 647-657. doi: 10.1016/j.tics.2014.06.011.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1234) PDF downloads(231) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return