Citation: | LI Weilong, WU Dewei, LU Hu, DU Jia, ZHOU Yang. Bio-inspired Goal-directed Navigation Model Based on Multi-scale Spatial Representation[J]. Journal of Electronics & Information Technology, 2017, 39(6): 1363-1370. doi: 10.11999/JEIT160892 |
ALEJANDRA B, GONZALO T, MARTIN L, et al. Learning spatial localization: From rat studies to computational models of the hippocampus[J]. Spatial Cognition and Computation: An Interdisciplinary Journal, 2015, 15: 27-59. doi: 10.1080/ 13875868.2014.961602.
|
FABIAN C and BURGESS N. The Cognitive architecture of spatial navigation: Hippocampal and striatal contributions[J]. Neuron, 2015, 88(1): 64-77. doi: 10.1016/j.neuron.2015.09. 021.
|
RAYMOND P K and EDMUND T R. A computational theory of hippocampal function, and tests of the theory: New developments[J]. Neuroscience and Biobehavioral Reviews, 2015, 48(1): 92-147. doi: 10.1016/j.neubiorev.2014.11.009.
|
TOLMAN E C. Cognitive maps in rats and men[J]. Psychological Review, 1948, 55(1): 189-208. doi: 10.1037/ h0061626.
|
OKEEFE J and DOSLROVSKV J. The hippocampus as a spatial map[J]. Brain Research, 1971, 34(1): 171-175. doi: 10.1016/0006-8993(71)90358-1.
|
OKEEFE J and BURGESS N. Geometric determinants of the place fields of hippocampal neurons[J]. Nature, 1996, 381(6581): 425-428. doi: 10.1038/381425a0.
|
BJERKNES T, LANGSTON R, KRUGE I, et al. Coherence among head direction cells before eye opening in rat pups[J]. Current Biology, 2015, 25(1): 103-108. doi: 10.1016/j.cub. 2014.11.009.
|
GIOCOMO L M, STENSOLA T, BONNEVIE T, et al. Topography of head direction cells in medial entorhinal cortex[J]. Current Biology, 2014, 24(3): 252-262. doi: 10.1016 /j.cub.2013.12.002.
|
HAFTING T, FYHN M, MOLDEN S, et al. Microstructure of a spatial map in the entorhinal cortex[J]. Nature, 2005, 436(7052): 801-806. doi: 10.1038/nature03721.
|
DANIEL B, CASWELL B, DANIEL M, et al. Using grid cells for navigation[J]. Neuron, 2015, 87(3): 507-520. doi: 10.1016/ j.neuron.2015.07.006.
|
SOLSTAD T, BOCCARA C N, KROPFF E, et al. Representation of geometric borders in the entorhinal cortex[J]. Science, 2009, 322(5909): 1865-1868. doi: 10.1126/ science.1166466.
|
EMILIO K, JAMES E C, MOSER M B, et al. Speed cells in the medial entorhinal cortex[J]. Nature, 2015, 523(7561): 419-424. doi: 10.1038/nature14622.
|
TAVARES R M, MENDELSOHN A, GROSSMAN Y, et al. A map for social navigation in the human brain[J]. Neuron, 2015, 87(1): 231-243. doi: 10.1016/j.neuron.2015.06.011.
|
IOANNIS K, KONSTANTINOS C, ANTONIOS G, et al. Robot navigation via spatial and temporal coherent semantic maps[J]. Engineering Applications of Artificial Intelligence, 2016, 48(1): 173-187. doi: 10.1016/j.engappai.2015.11.004.
|
曾毅, 刘成林, 谭铁牛. 类脑智能研究的回顾与展望[J]. 计算机学报, 2016, 39(1): 212-222. doi: 10.11897/SP.J.1016.2016. 00212.
|
ZENG Yi, LIU Chenglin, and TAN Tieniu. Retrospect and outlook of brain-inspired intelligence research[J]. Chinese Journal of Computer, 2016, 39(1): 212-222. doi: 10.11897/SP. J.1016.2016.00212.
|
李伟龙, 吴德伟, 周阳, 等. 基于生物位置细胞放电机理的空间位置表征方法[J]. 电子与信息学报, 2016, 38(8): 2040-2046. doi: 10.11999/JEIT151331.
|
LI Weilong, WU Dewei, Zhou Yang, et al. A method of spatial place representation based on biological place cells firing[J]. Journal of Electronics Information Technology, 2016, 38(8): 2040-2046. doi: 10.11999/JEIT151331.
|
SPIERS H J and BARRY C. Neural systems supporting navigation[J]. Current Opinion in Behavioral Sciences, 2015, 1(1): 47-55. doi: 10.1016/j.cobeha.2014.08.005.
|
ERDEM U M, MILFORD M J, and HASSELMO M E. A hierarchical model of goal directed navigation selects trajectories in a visual environment[J]. Neurobiology of Learning and Memory, 2015, 117(1): 109-121. doi: 10.1016/ j.nlm.2014.07.003.
|
GEVA-SAGIV M, LAS L, YOVEL Y, et al. Spatial cognition in bats and rats: from sensory acquisition to multiscale maps and navigation[J]. Nature Reviews Neuroscience, 2015, 16(2): 94-108. doi: 10.1038/nrn3888.
|
KEINATH A T, WANG M E, WANN E G, et al. Precise spatial coding is preserved along the longitudinal hippocampal axis[J]. Hippocampus, 2014, 24(12): 1533-1548. doi: 10.1002/hipo.22333.
|
LONG L L, BUNCE J G, and CHROBAK J J. Theta variation and spatiotemporal scaling along the septotemporal axis of the hippocampus[J]. Frontiers in Systems Neuroscience, 2015, 37(9): 1-14. doi: 10.3389/fnsys.2015. 00037.
|
ROBITSEK R J, WHITE J A, and EICHENBAUM H. Place cell activation predicts subsequent memory[J]. Behavioural Brain Research, 2013, 254(4): 65-72. doi: 10.1016/j.bbr.2012. 12.034.
|
KONAR A, CHAKRABORTY I G, SINGH S J, et al. A deterministic improved q-learning for path planning of a mobile robot[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2015, 43(5): 1141-1153. doi: 10.1109/ TSMCA.2012.2227719.
|
CUPERLIER N, QUOY M, and GAUSSIER P. Neurobiologically inspired mobile robot navigation and planning[J]. Frontiers in Neurorobotics, 2007, 1(3): 1-15. doi: 10.3389/neuro.12.003.2007.
|
GIOVANNI P, MATTHIJS A A, MEER V D, et al. Internally generated sequences in learning and executing goal-directed behavior[J]. Trends in Cognitive Sciences, 2014, 18(12): 647-657. doi: 10.1016/j.tics.2014.06.011.
|