Citation: | HUANG Zhengfeng, WANG Shichao, OUYANG Yiming, YI Maoxiang, LIANG Huaguo. Low Power Soft Error Tolerant Latch for 40 nm CMOS Technology[J]. Journal of Electronics & Information Technology, 2017, 39(6): 1464-1471. doi: 10.11999/JEIT160889 |
ROBERT L. S. Porting and scaling strategies for nanoscale CMOS RHBD[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2015, 62(12): 2856-2863. doi: 10.1109/TCSI.2015.2495779.
|
黄正峰, 陈凡, 蒋翠云, 等. 基于时序优先的电路容错混合加固方案[J]. 电子与信息学报, 2014, 36(1): 234-240. doi: 10.3724/SP.J.1146.2013.00449.
|
HUANG Zhengfeng, CHEN Fan, JIANG Cuiyun, et al. A hybrid hardening strategy for circuit soft-error-tolerance based on timing priority[J]. Journal of Electronics Information Technology, 2014, 36(1): 234-240. doi: 10.3724/ SP.J.1146.2013.00449.
|
ARTOLA L, GAILLARDIN M. HUBERT G, et al. Modeling single event transients in advanced devices and ICs[J]. IEEE Transactions on Nuclear Science, 2015, 62(4): 1528-1539. doi: 10.1109/TNS.2015.2432271.
|
VRONIQUE F C, LLOYD W M, and PASCAL G. Single event transients in digital CMOSA review[J]. IEEE Transactions on Nuclear Science, 2013, 60(3): 1767-1790. doi: 10.1109/TNS.2013.2255624.
|
NEALE A and SACHDEV M. Neutron radiation induced soft error rates for an adjacent-ECC protected SRAM in 28 nm CMOS[J]. IEEE Transactions on Nuclear Science, 2016, 63(3): 1912-1917. doi: 10.1109/TNS.2016.2547963.
|
NEALE A, JONKMAN M, and SACHDEV M. Adjacent- MBU-tolerant SECDED-TAEC-yAED codes for embedded SRAMs[J]. IEEE Transactions on Circuits and System-II Express Brifs, 2015, 62(4): 387-391. doi: 10.1109/TCSII.2014. 2368262.
|
CALIN T, NICOLAIDIS M, and VELAZCO R. Upset hardened memory design for submicron cmos technology[J]. IEEE Transactions on Nuclear Science, 1996, 43(6): 2874-2878. doi: 10.1109/23.556880.
|
CASEY M C, BHUVA B L, BLACK J D, et al. HBD using cascade-voltage switch logic gates for SET tolerant digital designs[J]. IEEE Transactions on Nuclear Science, 2005, 52(6): 2510-2515. doi: 10.1109/TNS.2005.860715.
|
SASAKI Y, NAMBA K, and ITO H. Circuit and latch capable of masking soft errors with Schmitt trigger[J]. Journal of Electronic Testing, 2008, 24(1~3): 11-19. doi: 10.1007/s10836-007-5034-2.
|
NICOLAIDIS M. Design for soft error mitigation[J]. IEEE Transactions on Device and Materials Reliability, 2005, 5(3): 405-418. doi: 10.1109/TDMR.2005.855790.
|
REN Yi, CHEN Li, and BI Jinshun. An RHBD bandgap reference utilizing single event transient isolation technique[J]. IEEE Transactions on Nuclear Science, 2016, 63(3): 1927-1933. doi: 10.1109/TNS.2016.2554104.
|
MAVIS D G and EATON P H. Soft error rate mitigation techniques for modern microcircuits[C]. Proceedings of 2002 IEEE International Reliability Physics Symposium, Dallas, TX, USA, 2002: 216-225.
|
ZHANG M, MITRA S, MAK T M, et al. Sequential element design with built-in soft error resilience[J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2006, 14(12): 1368-1378. doi: 10.1109/TVLSI.2006.887832.
|
LIN S, KIM Y B, and LOMBARDI F. Soft-error hardening designs of nanoscale cmos latches[C]. Proceedings of 27th IEEE VLSI Test Symposium, Santa Cruz, CA, USA, 2009: 41-46.
|
QI C, XIAO L, GUO J, et al. Low cost and highly reliable radiation hardened latch design in 65 nm CMOS technology [J]. Microelectronics Reliability, 2015, 55(6): 863-872 . doi: 10.1016/j.microrel.2015.03.014.
|
OMANA M, ROSSI D, and METRA C. Latch susceptibility to transient faults and new hardening approach[J]. IEEE Transactions on Computers, 2007, 56(9): 1255-1268. doi: 10. 1109/TC.2007.1070.
|
HOSSEIN K A and VOJIN G O. Low-power soft error hardened latch[J]. Journal of Low Power Electronics, 2010, 6(1): 1-9. doi: 10.1007/978-3-642-11802-9_30.
|
SAEIDEH S and RAHEBEH N A. A novel soft error hardened latch design in 90nm CMOS[C]. Proceedings of the 16th CSI International Symposium on Computer Architecture and Digital Systems, Shiraz, Iran, 2012: 60-63.
|
RAJAEI R, TABANDEH M, and FAZELI M. Low cost soft error hardened latch designs for nano-scale CMOS technology in presence of process variation[J]. Microelectronics Reliability, 2013, 53(6): 912-924. doi: 10.1016/j.microrel.2013. 02.012.
|
HUANG Zhengfeng, LIANG Huaguo, and HELLEBRAND S. A high performance SEU tolerant latch[J]. Journal of Electronic Testing. 2015, 31(4): 349-359. doi: 10.1007/s10836 -015-5533-5.
|
JUN F, JUNKI Y, and KAZUTOSHI K. A radiation- hardened non-redundant flip-flop, stacked leveling critical charge flip-flop in a 65 nm thin BOX FD-SOI process[J]. IEEE Transactions on Nuclear Science, 2016, 63(4): 2080-2086. doi: 10.1109/TNS.2016.2543745.
|
LU Y, LOMBARDI F, PONTARELLI S, et al. Design and analysis of single-event tolerant slave latches for enhanced scan delay testing[J]. IEEE Transactions on Device and Materials Reliability, 2014, 14(1): 333-343. doi: 10.1109/ TDMR.2013.2266543.
|
MESSENGER G C. Collection of charge on junction nodes from ion tracks[J]. IEEE Transactions on Nuclear Science, 1982, 29(6): 2024-2031. doi: 10.1109/TNS.1982.4336490.
|
NAN H and CHOI K. High performance, low cost, and robust soft error tolerant latch designs for nanoscale CMOS technology[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2012, 59(7): 1445-1457. doi: 10.1109/TCSI. 2011.2177135.
|
YAN Aibin, LIANG Huaguo, HUANG Zhengfeng, et al. An SEU resilient, SET filterable and cost effective latch in presence of PVT variations[J]. Microelectronics Reliability, 2016, 63(1): 239-250. doi: 10.1016/j.microrel.2016.06.004.
|