Advanced Search
Volume 39 Issue 6
Jun.  2017
Turn off MathJax
Article Contents
HUANG Zhengfeng, WANG Shichao, OUYANG Yiming, YI Maoxiang, LIANG Huaguo. Low Power Soft Error Tolerant Latch for 40 nm CMOS Technology[J]. Journal of Electronics & Information Technology, 2017, 39(6): 1464-1471. doi: 10.11999/JEIT160889
Citation: HUANG Zhengfeng, WANG Shichao, OUYANG Yiming, YI Maoxiang, LIANG Huaguo. Low Power Soft Error Tolerant Latch for 40 nm CMOS Technology[J]. Journal of Electronics & Information Technology, 2017, 39(6): 1464-1471. doi: 10.11999/JEIT160889

Low Power Soft Error Tolerant Latch for 40 nm CMOS Technology

doi: 10.11999/JEIT160889
Funds:

The National Natural Science Foundation of China (61574052, 61371025, 61474036, 61674048), The Natural Science Foundation of Anhui Province (1608085MF149)

  • Received Date: 2016-09-02
  • Rev Recd Date: 2017-02-22
  • Publish Date: 2017-06-19
  • To reduce the soft error rate of the circuit, this paper proposes a low power soft error tolerant latch based on time redundancy technology. The proposed latch can fully tolerate the Single Event Upset (SEU) when particles strike on internal nodes. Furthermore, it can efficiently mask the input Single Event Transient (SET). Its output node will not enter a high impedance state when a particle strikes on internal nodes, so the proposed latch can be applied to clock-gating circuits. Detailed SPICE simulations are done to evaluate the proposed latch circuit and previous latch circuits designed in the literatures. Compared with other soft error tolerant latches, the proposed latch introduces 13.4% delay overhead on average. While it can achieve 44.3% increase in filterable SET pulse width, 48.5% reduction in power, 46.0% reduction in Power Delay Product (PDP), and 9.1% reduction in transistor numbers on average.
  • loading
  • ROBERT L. S. Porting and scaling strategies for nanoscale CMOS RHBD[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2015, 62(12): 2856-2863. doi: 10.1109/TCSI.2015.2495779.
    黄正峰, 陈凡, 蒋翠云, 等. 基于时序优先的电路容错混合加固方案[J]. 电子与信息学报, 2014, 36(1): 234-240. doi: 10.3724/SP.J.1146.2013.00449.
    HUANG Zhengfeng, CHEN Fan, JIANG Cuiyun, et al. A hybrid hardening strategy for circuit soft-error-tolerance based on timing priority[J]. Journal of Electronics Information Technology, 2014, 36(1): 234-240. doi: 10.3724/ SP.J.1146.2013.00449.
    ARTOLA L, GAILLARDIN M. HUBERT G, et al. Modeling single event transients in advanced devices and ICs[J]. IEEE Transactions on Nuclear Science, 2015, 62(4): 1528-1539. doi: 10.1109/TNS.2015.2432271.
    VRONIQUE F C, LLOYD W M, and PASCAL G. Single event transients in digital CMOSA review[J]. IEEE Transactions on Nuclear Science, 2013, 60(3): 1767-1790. doi: 10.1109/TNS.2013.2255624.
    NEALE A and SACHDEV M. Neutron radiation induced soft error rates for an adjacent-ECC protected SRAM in 28 nm CMOS[J]. IEEE Transactions on Nuclear Science, 2016, 63(3): 1912-1917. doi: 10.1109/TNS.2016.2547963.
    NEALE A, JONKMAN M, and SACHDEV M. Adjacent- MBU-tolerant SECDED-TAEC-yAED codes for embedded SRAMs[J]. IEEE Transactions on Circuits and System-II Express Brifs, 2015, 62(4): 387-391. doi: 10.1109/TCSII.2014. 2368262.
    CALIN T, NICOLAIDIS M, and VELAZCO R. Upset hardened memory design for submicron cmos technology[J]. IEEE Transactions on Nuclear Science, 1996, 43(6): 2874-2878. doi: 10.1109/23.556880.
    CASEY M C, BHUVA B L, BLACK J D, et al. HBD using cascade-voltage switch logic gates for SET tolerant digital designs[J]. IEEE Transactions on Nuclear Science, 2005, 52(6): 2510-2515. doi: 10.1109/TNS.2005.860715.
    SASAKI Y, NAMBA K, and ITO H. Circuit and latch capable of masking soft errors with Schmitt trigger[J]. Journal of Electronic Testing, 2008, 24(1~3): 11-19. doi: 10.1007/s10836-007-5034-2.
    NICOLAIDIS M. Design for soft error mitigation[J]. IEEE Transactions on Device and Materials Reliability, 2005, 5(3): 405-418. doi: 10.1109/TDMR.2005.855790.
    REN Yi, CHEN Li, and BI Jinshun. An RHBD bandgap reference utilizing single event transient isolation technique[J]. IEEE Transactions on Nuclear Science, 2016, 63(3): 1927-1933. doi: 10.1109/TNS.2016.2554104.
    MAVIS D G and EATON P H. Soft error rate mitigation techniques for modern microcircuits[C]. Proceedings of 2002 IEEE International Reliability Physics Symposium, Dallas, TX, USA, 2002: 216-225.
    ZHANG M, MITRA S, MAK T M, et al. Sequential element design with built-in soft error resilience[J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2006, 14(12): 1368-1378. doi: 10.1109/TVLSI.2006.887832.
    LIN S, KIM Y B, and LOMBARDI F. Soft-error hardening designs of nanoscale cmos latches[C]. Proceedings of 27th IEEE VLSI Test Symposium, Santa Cruz, CA, USA, 2009: 41-46.
    QI C, XIAO L, GUO J, et al. Low cost and highly reliable radiation hardened latch design in 65 nm CMOS technology [J]. Microelectronics Reliability, 2015, 55(6): 863-872 . doi: 10.1016/j.microrel.2015.03.014.
    OMANA M, ROSSI D, and METRA C. Latch susceptibility to transient faults and new hardening approach[J]. IEEE Transactions on Computers, 2007, 56(9): 1255-1268. doi: 10. 1109/TC.2007.1070.
    HOSSEIN K A and VOJIN G O. Low-power soft error hardened latch[J]. Journal of Low Power Electronics, 2010, 6(1): 1-9. doi: 10.1007/978-3-642-11802-9_30.
    SAEIDEH S and RAHEBEH N A. A novel soft error hardened latch design in 90nm CMOS[C]. Proceedings of the 16th CSI International Symposium on Computer Architecture and Digital Systems, Shiraz, Iran, 2012: 60-63.
    RAJAEI R, TABANDEH M, and FAZELI M. Low cost soft error hardened latch designs for nano-scale CMOS technology in presence of process variation[J]. Microelectronics Reliability, 2013, 53(6): 912-924. doi: 10.1016/j.microrel.2013. 02.012.
    HUANG Zhengfeng, LIANG Huaguo, and HELLEBRAND S. A high performance SEU tolerant latch[J]. Journal of Electronic Testing. 2015, 31(4): 349-359. doi: 10.1007/s10836 -015-5533-5.
    JUN F, JUNKI Y, and KAZUTOSHI K. A radiation- hardened non-redundant flip-flop, stacked leveling critical charge flip-flop in a 65 nm thin BOX FD-SOI process[J]. IEEE Transactions on Nuclear Science, 2016, 63(4): 2080-2086. doi: 10.1109/TNS.2016.2543745.
    LU Y, LOMBARDI F, PONTARELLI S, et al. Design and analysis of single-event tolerant slave latches for enhanced scan delay testing[J]. IEEE Transactions on Device and Materials Reliability, 2014, 14(1): 333-343. doi: 10.1109/ TDMR.2013.2266543.
    MESSENGER G C. Collection of charge on junction nodes from ion tracks[J]. IEEE Transactions on Nuclear Science, 1982, 29(6): 2024-2031. doi: 10.1109/TNS.1982.4336490.
    NAN H and CHOI K. High performance, low cost, and robust soft error tolerant latch designs for nanoscale CMOS technology[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2012, 59(7): 1445-1457. doi: 10.1109/TCSI. 2011.2177135.
    YAN Aibin, LIANG Huaguo, HUANG Zhengfeng, et al. An SEU resilient, SET filterable and cost effective latch in presence of PVT variations[J]. Microelectronics Reliability, 2016, 63(1): 239-250. doi: 10.1016/j.microrel.2016.06.004.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1356) PDF downloads(491) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return