Citation: | LENG Ying, LIU Zhongling, ZHANG Heng, WANG Yu, LI Ning. Improved ACM Algorithm for Poyang Lake Monitoring[J]. Journal of Electronics & Information Technology, 2017, 39(5): 1064-1070. doi: 10.11999/JEIT160870 |
YESOU H, HUBER C, HAOUET S, et al. Exploiting sentinel 1 time series to monitor the largest fresh water bodies in PR China, the Poyang lake[C]. IEEE International Geoscience and Remote Sensing Symposium, Beijing, China, 2016: 3882-3885. doi: 10.1109/IGARSS.2016.7730008.
|
ZHANG P, FENG L, LU J Z, et al. Hydrodynamic and inundation modeling of Chinas largest freshwater lake aided by remote sensing data[J]. Remote Sensing, 2015, 7(4): 4858-4879. doi: 10.3390/rs70404858.
|
LAI X J, SHANKMAN D, HUBER C, et al. Sand mining and increasing Poyang Lakes discharge ability: A reassessment of causes for lake decline in China[J]. Journal of Hydrology, 2014, 519(1): 1698-1706. doi: 10.1016/j.jhydrol.2014.09.058.
|
YE X C, ZHANG Q, LIU J, et al. Distinguishing the relative impacts of climate change and human activities on variation of streamflow in the Poyang Lake catchment, China[J]. Journal of Hydrology, 2013, 494(12): 83-95. doi: 10.1016 /j.jhydrol.2013.04.036.
|
FENG L, HU C, CHEN X, et al. Dramatic inundation changes of Chinas two largest freshwater lakes linked to the Three Gorges Dam[J]. Environmental Science and Technology, 2013, 47(17): 9628-9634. doi: 10.1021/es4009618.
|
FENG L, HU C M, HAN X X, et al. Long-term distribution patterns of Chlorophyll-a concentration in Chinas largest freshwater lake: MERIS full-resolution observations with a practical approach[J]. Remote Sensing, 2015, 7(1): 275-299. doi: 10.3390/rs70100275.
|
LI L, XIA H, LI Z, et al. Temporal-spatial evolution analysis of lake size-distribution in the middle and lower Yangtze river basin using Landsat imagery data[J]. Remote Sensing, 2015, 7(8): 10364-10384. doi: 10.3390/rs70810364.
|
安成锦, 牛照东, 李志军, 等. 典型 Otsu 算法阈值比较及其SAR 图像水域分割性能分析[J]. 电子与信息学报, 2010, 32(9): 2215-2219. doi: 10.3724/SP.J.1146.2009.01426.
|
AN Chengjin, NIU Zhaodong, LI Zhijun, et al. Otsu threshold comparison and SAR water segmentation result analysis[J]. Journal of Electronics Information Technology, 2010, 32(9): 2215-2219. doi: 10.3724/SP.J.1146.2009.01426.
|
SHENG G F, YANG W, DENG X P, et al. Coastline detection in synthetic aperture radar (SAR) Images by integrating watershed transformation and controllable gradient vector flow (GVF) snake model[J]. IEEE Journal of Oceanic Engineering, 2012, 37(3): 375-383. doi: 10.1109/JOE. 2012.2191998.
|
颜学颖, 焦李成, 王凌霞, 等. 一种提高SAR 图像分割性能的新方法[J]. 电子与信息学报, 2011, 33(7): 1700-1705. doi: 10.3724/SP.J.1146.2010.01190.
|
YAN Xueying, JIAO Licheng, WANG Lingxia, et al. New method for improving the performance of SAR image segmentation[J]. Journal of Electronics Information Technology, 2011, 33(7): 1700-1705. doi: 10.3724/SP.J.1146. 2010.01190.
|
CASELLES V, KIMMEL R, and SAPIRO G. Geodesic active contours[J]. International Journal of Computer Vision, 1997, 22(1): 61-79. doi: 10.1023/A:1007979827043.
|
ADALSTEINSSON D and SETHIAN J A. A fast level set method for propagating interfaces[J]. Journal of Computational Physics, 1995, 118(2): 269-277. doi: 10.1006/ jcph.1995.1098.
|
ZHANG K, ZHANG L, SONG H, et al. Active contours with selective local or global segmentation: A new formulation and level set method[J]. Image Vision Computing, 2010, 28(4): 668-676. doi: 10.1016/j.imavis.2009.10.009.
|
XU C, YEZZI A, and PRINCE J L. On the relationship between parametric and geometric active contours[C]. IEEE Signals, Systems and Computers, Asilomar, USA, 2000: 483-489. doi: 10.1109/ACSSC.2000.911003.
|
LIU Z L, LI N, WANG R, et al. A novel region-merging approach for coastline extraction from Sentinel-1A IW mode SAR imagery[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(3): 324-328. doi: 10.1109/LGRS.2015. 2510745.
|
BASELICE F and FERRAIOLI G. Unsupervised coastal line extraction from SAR images[J]. IEEE Geoscience Remote Sensing Letters, 2013, 10(6): 1350-1354. doi: 10.1109/LGRS. 2013.2241013.
|
SHU Y M, LI J, and YOUSIF H. Dark-spot detection from SAR intensity imagery with spatial density thresholding for oil-spill monitoring[J]. Remote Sensing of Environment, 2010, 114(9): 2026-2035. doi: 10.1016/j.rse.2010.04.009.
|
1. | 包立男,吕孝雷. 基于改进的高斯混合模型和图割模型的水体图像提取算法. 中国科学院大学学报(中英文). 2024(06): 794-802 . ![]() | |
2. | 王远明,宫克,毛飞雄,杨明思,肖龙,李明辉. 基于ACM及机器学习的腐蚀监测分析系统在重大基础设施上的应用. 中国表面工程. 2024(06): 205-215 . ![]() | |
3. | 李宁,郭志顺,毋琳,赵建辉. River-Net:面向河道提取的Refined-Lee Kernel深度神经网络模型. 雷达学报. 2022(03): 324-334 . ![]() | |
4. | 陈嘉琪,刘祥梅,李宁,张燕. 一种超分辨SAR图像水域分割算法及其应用. 电子与信息学报. 2021(03): 700-707 . ![]() | |
5. | 李宁,牛世林. 基于局部超分辨重建的高精度SAR图像水域分割方法. 雷达学报. 2020(01): 174-184 . ![]() | |
6. | 闵林,王宁,毋琳,李宁,赵建辉. 基于多源雷达遥感技术的黄河径流反演研究. 电子与信息学报. 2020(07): 1590-1598 . ![]() | |
7. | 汤玲英,刘雯,杨东,陈乐,苏扬媚,徐宪立. 基于面向对象方法的Sentinel-1A SAR在洪水监测中的应用. 地球信息科学学报. 2018(03): 377-384 . ![]() | |
8. | 牛世林,郭拯危,李宁,毋琳,赵建辉. 星载SAR水域分割研究进展与趋势分析. 聊城大学学报(自然科学版). 2018(02): 72-86 . ![]() |