Advanced Search
Volume 39 Issue 6
Jun.  2017
Turn off MathJax
Article Contents
LI Fangmin, XIA Yuqing, MA Xiaolin, ZHAO Bihai. Indoor Human Localization Method of Dual Frequency Continuous Wave Radar with Velocity Deviation Compensation[J]. Journal of Electronics & Information Technology, 2017, 39(6): 1432-1438. doi: 10.11999/JEIT160861
Citation: LI Fangmin, XIA Yuqing, MA Xiaolin, ZHAO Bihai. Indoor Human Localization Method of Dual Frequency Continuous Wave Radar with Velocity Deviation Compensation[J]. Journal of Electronics & Information Technology, 2017, 39(6): 1432-1438. doi: 10.11999/JEIT160861

Indoor Human Localization Method of Dual Frequency Continuous Wave Radar with Velocity Deviation Compensation

doi: 10.11999/JEIT160861
Funds:

The National Natural Science Foundation of China (61373042, 61502361)

  • Received Date: 2016-08-22
  • Rev Recd Date: 2017-01-24
  • Publish Date: 2017-06-19
  • The radar technology used in indoor localization prefers wide bandwidth frequency modulated continuous wave for high accuracy, yet this way needs specific device and suffers from clutters. In order to reduce the bandwidth overhead, the indoor human localization is implemented based on dual frequency continuous wave phase ratio. However, the receive signal spectrum spreads due to the complex indoor environment and the changing moving speed. The spectrum spread will leads to SNR reduction, energy divergence and wrong peak value, which decrease velocity measuring and localization accuracy. To improve the location accuracy, the frequency domain signal is calibrated with the proposed partial velocity deviation compensation algorithm in the dual frequency phase ratio localization. The experiment results show that the root mean square error of the distance measuring is as high as 9 ~ 14 cm in low bandwidth, which is parallel to the state of art. Moreover, the indoor localization and tracking can work in real time by using the proposed low complexity algorithm.
  • loading
  • WANG S and ZHOU G. A review on radio based activity recognition[J]. Digital Communications and Networks, 2015, 1(1): 20-29. doi: 10.1016/j.dcan.2015.02.006.
    YANG C and SHAO H R. WiFi-based indoor positioning[J]. IEEE Communications Magazine, 2015, 53(3): 150-157. doi: 10.1109/MCOM.2015.7060497.
    VAGHEFI R M, AMURU S D, JAKUBISIN D, et al. MIMO-radar-based indoor passive geolocation and tracking[C]. IEEE/ION Position, Location and Navigation Symposium (PLANS), Savannah, GA, USA, 2016: 622-629.
    ADIB F, KABELAC Z, KATABI D, et al. 3D tracking via body radio reflections[C]. 11th USENIX Symposium on Networked Systems Design and Implementation, Seatlle, WA, USA, 2014: 317-329.
    ADIB F, KABELAC Z, and KATABI D. Multi-person localization via RF body reflections[C]. 12th USENIX Symposium on Networked Systems Design and Implementation, Santa Clara, CA, USA, 2015: 279-292.
    AMIN M, ZEMANY P, SETLUR P, et al. Moving target localization for indoor imaging using dual frequency CW radars [C]. IEEE Sensor Array and Multichannel Processing, Waltham, MA, USA, 2006: 367-371.
    ZHOU C and GRIFFIN J D. Accurate phase-based ranging measurements for backscatter RFID tags[J]. IEEE Antennas and Wireless Propagation Letters, 2012, 11(1): 152-155. doi: 10.1109/LAWP.2012.2186110.
    LIU L, ZHOU F, TAO M, et al. Cross-range scaling method of inverse synthetic aperture radar image based on discrete polynomial-phase transform[J]. IET Radar, Sonar Navigation, 2015, 9(3): 333-341. doi: 10.1049/iet-rsn.2013. 0392.
    朱仁飞, 朱小鹏, 张群. 基于调频连续波信号的双基地ISAR成像研究[J]. 宇航学报, 2012, 33(2): 222-227. doi: 10.3873/ j.issn. 1000-1328.2012.02.011.
    ZHU Renfei, ZHU Xiaopeng, and ZHANG Qun. Imaging study on bi-static ISAR based on frequency modulation continuous wave[J]. Journal of Astronautics, 2012, 33(2): 222-227. doi: 10.3873/j.issn.1000-1328.2012.02.011.
    XIA X G. Discrete chirp-fourier transform and its application to chirp rate estimation[J]. IEEE Transactions on Signal Processing, 2000, 48(11): 3122-3133. doi: 10.1109/78.875469.
    ABATZOGLOU T J. Fast maximnurm likelihood joint estimation of frequency and frequency rate[J]. IEEE Transactions on Aerospace and Electronic Systems, 1986 22(6): 708-715. doi: 10.1109/TAES.1986.310805.
    LEE D and SONG K. Simulated maximum likelihood estimation for discrete choices using transformed simulated frequencies[J]. Journal of Econometrics, 2015, 187(1): 131-153. doi: 10.1016/j.jeconom.2014.12.009.
    曹延伟, 江志红. 加速运动目标的双频比相测距算法研究[J]. 电子与信息学报, 2007, 29(12): 2858-2862.
    CAO Yanwei and JIANG Zhihong. Research on algorithm of dual frequency ranging for target with acceleration[J]. Journal of Electronics Information Technology, 2007, 29(12): 2858-2862.
    SKOLNIK M, 左群声. 雷达导论[M]. 北京: 电子工业出版社, 2014: 321-340.
    SKOLNIK M and ZUO Qunsheng. Introdution to Radar Systems[M]. Beijing, Publishing House of Electronics Industry, 2014: 321-340.
    吴顺君, 梅晓春. 雷达信号处理和数据处理技术[M]. 北京: 电子工业出版社, 2008: 19-45.
    WU Shunjun and MEI Xiaochun. Radar Signal Processing and Data Processing Technology[M]. Beijing: Publishing House of Electronics Industry, 2008: 19-45.
    COSTANZO S, SPADAFORA F, MASSA G D, et al. Potentialities Of USRP-based software defined radar systems[J]. Progress in Electromagnetics Research B, 2013, 53(53): 417-435.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1196) PDF downloads(398) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return