Advanced Search
Volume 39 Issue 6
Jun.  2017
Turn off MathJax
Article Contents
ZHOU Yulong, CAO Xiangyu, GAO Jun, ZHENG Yuejun, ZHANG Chen. Dualband Frequncey Selective Surface and Its Application to Wideband RCS Reduction of The Microstrip Antenna[J]. Journal of Electronics & Information Technology, 2017, 39(6): 1446-1451. doi: 10.11999/JEIT160854
Citation: ZHOU Yulong, CAO Xiangyu, GAO Jun, ZHENG Yuejun, ZHANG Chen. Dualband Frequncey Selective Surface and Its Application to Wideband RCS Reduction of The Microstrip Antenna[J]. Journal of Electronics & Information Technology, 2017, 39(6): 1446-1451. doi: 10.11999/JEIT160854

Dualband Frequncey Selective Surface and Its Application to Wideband RCS Reduction of The Microstrip Antenna

doi: 10.11999/JEIT160854
Funds:

The National Natural Science Foundation of China (61271100, 61471389, 61501494, 61671464)

  • Received Date: 2016-08-22
  • Rev Recd Date: 2017-01-09
  • Publish Date: 2017-06-19
  • A dual stop band Frequency Selective Surface (FSS) in windmill-liked shape is proposed, which achieves wide Rader Cross Section (RCS) reduction by applying FSS on the ground of the dualband microstrip antenna. Each corner of the FSS is formed by combining two semi-suqares which have 90 of rotation between each semi-square. The dual stop bands are the results of the resonance of the electric dipole and the higher order mode effect. The simulation and measurement results show that the gain of E plane and H plane at 5.20 GHz is maintained, while the gain of E plane and H plane at 10.41 GHz are increased by 1.8 dBi, simultaneously. The antennas monostatic RCS reduction is obviously observed in a wide frequency band ranging from 1.0 GHz to 16.8 GHz. Whats more, the maximum value is 28.3 dB under x polarization and 36.2 dB under y polarization, respectively.
  • loading
  • 丁友, 李民权, 彭猛, 等. 一种新型的双频高增益天线[J]. 电子与信息学报, 2014, 36(7): 1771-1774. doi: 10.3724/SP.J. 1146.2013.01256.
    DING Y, LI M Q, PENG M, et al. Design of a noveldual-band high gain antenna[J]. Journal of Electronics Information Technology, 2014, 36(7): 1771-1774. doi: 10.3724/SP.J.1146. 2013.01256.
    HONARI M M, MIEZAVAND R, SAGHLATOON H, et al. A dual-band low-profile aperture antenna with substrate- intergrated waveguide grooves[J]. IEEE Transactions on Antennas and Propagation, 2016, 64(4): 1561-1566. doi: 10. 1109/TAP.2016.2526610.
    SUNG Y. Compact dual-band antenna for 2.4/5.2/5.8 GHz WLAN service for laptop computer applications[J]. Microwave and Optical Technology Letters, 2015, 57(9): 2207-2213. doi: 10.1002/mop.29289.
    WIESBECK W and HEIDRICH E. Influence of antennas on the radar cross section of camouflaged aircraft[C]. International Conference Radar 92, Brighton, UK, 1992: 122-125.
    WILSEN C B and DAVIDSON D B. The radar cross section reduction of microstrip patches[C]. Proceedings of the 1996 4th IEEE AFRICON Conference, Stellenbosch, South Africa, 1996, 2: 730-733. doi: 10.1109/AFRCON.1996.562980.
    LI W Q, CAO X Y, and GAO J. A novel low RCS microstrip antenna[C]. 3rd Asia-Pacific Conference on Antennas and Propagation, Harbin, China, 2014: 495-498. doi: 10.1109/ APCAP.2014.6992536.
    LI S J, GAO J, CAO X Y, et al. Broadband and high-isolation dual-polarized microstrip antenna with low radar cross section[J]. IEEE Antennas and Wireless Propagation Letters, 2014, 13: 1413-1416. doi: 10.1109/ LAWP.2014.2339933.
    LI S J, GAO J, CAO X Y, et al. Wideband, thin, and polarization-insensitive perfect absorber based the double octagonal rings metamaterials and lumped resistances[J]. Journal of Applied Physics, 2014, 116(4): 043710. doi: 10.1063/1.4891716.
    高军, 张浩, 曹祥玉, 等. 一种双频超薄吸波结构在微带天线中的应用[J]. 西安电子科技大学学报, 2015, 42(1): 142-148. doi: 10.3969/j.issn.1001-2400.2015.01.021.
    GAO J, ZHANG H, CAO X Y, et al. Dual-band ultra-thin metamaterial absorber and its application in reducing RCS of microstrip antenna[J]. Journal of Xidian University, 2015, 42(1): 142-148. doi: 10.3969/j.issn.1001-2400.2015.01.021.
    ZHENG Y J, GAO J, CAO X Y, et al. Wideband RCS reduction of a microstrip antenna using artificial magnetic conductor structures[J]. IEEE Antennas and Wireless Propagation Letters, 2015, 14: 1582-1585. doi: 10.1109/ LAWP.2015.2413456.
    JIA Y T, LIU Y, GUO Y J, et al. Broadband polarization rotation reflective surfaces and their applications to RCS reduction[J]. IEEE Transactions on Antennas and Propagation, 2016, 64(1): 179-188. doi: 10.1109/TAP.2015. 2502981.
    WU T K. Frequency Selective Surface and Grid Array[M]. NewYork: Wiley, 1995: 1-10.
    ZHENG Y J, GAO J, CAO X Y, et al. Wideband RCS reduction and gain enhancement microstrip antenna using chessboard configuration supersteate[J]. Microwave and Optical Technology Letters, 2015, 57(5): 1738-1741. doi: 10. 1002/mop.29167.
    GENOVESI S, COSTA F, and MONORCHIO A. Low-profile array with reduced radar cross section by using hybrid frequency selective surfaces[J]. IEEE Transactions on Antennas and Propagation, 2012, 60(5): 2327-2335. doi: 10.1109/TAP.2012.2189701.
    JOOZDANI M Z, AMIRHOSSEINI M K, and ABDOLALI A. Wideband radar cross-section reduction of patch array antenna with miniaturized hexagonal loop frequency selective surface[J]. Electronics Letters, 2016, 52(9): 767-768. doi: 10.1049/el.2016.0336.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1423) PDF downloads(431) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return