Advanced Search
Volume 39 Issue 7
Jul.  2017
Turn off MathJax
Article Contents
FAN Qimeng, YIN Chengyou, LIAO Feilong. Analysis of Excitation Optimization of Short Wave Phased Array Based on Quantum-behaved Particle Swarm Optimization[J]. Journal of Electronics & Information Technology, 2017, 39(7): 1769-1773. doi: 10.11999/JEIT160819
Citation: FAN Qimeng, YIN Chengyou, LIAO Feilong. Analysis of Excitation Optimization of Short Wave Phased Array Based on Quantum-behaved Particle Swarm Optimization[J]. Journal of Electronics & Information Technology, 2017, 39(7): 1769-1773. doi: 10.11999/JEIT160819

Analysis of Excitation Optimization of Short Wave Phased Array Based on Quantum-behaved Particle Swarm Optimization

doi: 10.11999/JEIT160819
Funds:

The Natural Science Foundation of Anhui Province (1408085QF121)

  • Received Date: 2016-08-03
  • Rev Recd Date: 2017-01-20
  • Publish Date: 2017-07-19
  • In order to enhance long-distance communication performance and jamming ability in electronic warfare for shortwave equipment, performance improvement of near-ground wideband short wave phased array is required. Firstly, method of moments is adopted to construct the analysis framework, then the radiation field of antenna elements is decomposed into free-space part and Sommerfeld-integral part with the help of formulation of spatial Green,s function, the former part can be expressed in closed form and the latter part can be approximated by two-level DCIM. After that, the efficiency of filling impedance matrix is enormously increased. Finally, based on the impedance matrix, combining with network theory, Quantum-behaved Particle Swarm Optimization (QPSO) is employed to search for optimal excitation phases, through which high gain and beam scanning are realized. Furthermore, point-point sky wave propagation is implemented neatly in the condition of temporal and spatial variation of ionosphere parameters, thus the array is of great value in practical applications.
  • loading
  • MICHASKI K A and ZHENG Dalian. Electromagnetic scattering and radiation by surfaces of arbitrary shape in layered media, part I and part II[J]. IEEE Transactions on Antennas and Propagation, 1990, 38(3): 335-352.
    SARSHENAS M and FIROUZEH Z H. A robust hybrid Taguchi-gradient optimization method for the calculation of analytical Green,s functions of microstrip structures[J]. IEEE Antennas and Wireless Propagation Letters, 2015, 14: 1366-1368. doi: 10.1109/LAWP.2015.2407191.
    WU Biyi and SHENG Xinqing. A complex image deduction technique using genetic algorithm for the MoM solution of half-space MPIE[J]. IEEE Transactions on Antennas and Propagation, 2015, 63(8): 3727-3731. doi: 10.1109/TAP.2015. 2434418.
    KARABULUT E P, ERTURK V B, ALATAN L, et al. A novel approach for the efficient computation of 1-D and 2-D summations[J]. IEEE Transactions on Antennas and Propagation, 2016, 64(3): 1014-1022. doi: 10.1109/TAP.2016. 2521860.
    LUO Wan, NIE Zaiping, and CHEN Y P. Efficient higher- order analysis of electromagnetic scattering by objects above, below, or straddling a half-space[J]. IEEE Antennas and Wireless Propagation Letters, 2016, 15: 332-335. doi: 10.1109 /LAWP.2015.2443874.
    DYAB W M G, SARKAR T K, ABDALLAH M N, et al. Greens function using Schelkunoff integrals for horizontal electric dipoles over an imperfect ground plane[J]. IEEE Transactions on Antennas and Propagation, 2016, 64(4): 1342-1355 doi: 10.1109/TAP.2016.2529639.
    MICHASKI K A and MOSIG J R. The Sommerfeld halfspace problem redux: Alternative field representations, role of Zenneck and surface plasmon waves[J]. IEEE Transactions on Antennas and Propagation, 2015, 63(12): 5777-5790. doi: 10.1109/TAP.2015.2489680.
    MICHASKI K A and MOSIG J R. On the surface fields excited by a Hertzian dipole over a layered halfspace: From radio to optical wavelengths[J]. IEEE Transactions on Antennas and Propagation, 2015, 63(12): 5741-5752. doi: 10.1109/TAP.2015.2484422.
    焦程鹏, 贺秀莲, 龚书喜. 离散复镜像方法中的积分路径与展开函数的研究[J]. 电子与信息学报, 2008, 30(3): 734-737.
    JIAO Chengpeng, HE Xiulian, and GONG Shuxi. On the integration path and expansion function of the discrete complex image method[J]. Journal of Electronics Information Technology, 2008, 30(3): 734-737.
    AKSUN M I. A Robust approach for the derivation of closed-form Greens function[J]. IEEE Transactions on Microwave Theory and Techniques, 1996, 44(5): 651-658. doi: 10.1109/22.493917.
    AKSUN M I and DURAL G. Clarification of issues on the closed-form Green,s function in stratified media[J]. IEEE Transactions on Antennas and Propagation, 2005, 53(11): 3644-3653. doi: 10.1109/TAP.2005.858571.
    LIU Jiazhou, ZHAO Zhiqin, YUAN Mengqing, et al. The filter diagonalization method in antenna array optimization for pattern synthesis[J]. IEEE Transactions on Antennas and Propagation, 2014, 62(12): 6123-6130. doi: 10.1109/TAP.2014. 2364818.
    ROCCA P, ANSELMI N, and MASSA A. Optimal synthesis of robust beamformer weights exploiting interval analysis and convex optimization[J]. IEEE Transactions on Antennas and Propagation, 2014, 62(7): 3603-3612. doi: 10.1109/TAP.2014. 2318071.
    FUCHS B. Application of convex relaxation to array synthesis problem[J]. IEEE Transactions on Antennas and Propagation, 2014, 62(2): 634-640. doi: 10.1109/TAP.2013. 2290797.
    ELKAMCHOUCHI H M and HASSAN M M. Array pattern synthesis approach using a genetic algorithm[J]. IET Microwaves, Antennas Propagation, 2014, 8(14): 1236-1240. doi: 10.1049/iet-map.2013.0718.
    SUN Bin, REN Bo, LIU Chunheng, et al. Experimental investigation on the synthesis of scanning beam pattern with antenna selection for conformal array[J]. IET Microwaves, Antennas Propagation, 2016, 10(9): 969-975. doi: 10.1049/ iet-map.2015.0782.
    HU Guanzhong, YANG Shiyou, LI Yunling, et al. A hybridized vector optimal algorithm for multi-objective optimal designs of electromagnetic devices[J]. IEEE Transactions on Magnetics, 2016, 52(3): 1-4. doi: 10.1109/ TMAG.2015.2493181.
    孙俊. 量子行为粒子群优化算法研究[D]. [博士论文], 江南大学, 2009: 30-35.
    SUN Jun. Particle swarm optimization with particles having quantum behavior[D]. [Ph.D. dissertation], Jiangnan University, 2009: 30-35.
    RICHMOND J H and GEARY N H. Mutual impedance of nonplanar-skew sinusoidal dipoles[J]. IEEE Transactions on Antennas and Propagation, 1975, 23(3): 412-414. doi: 10.1109 /TAP.1975.1141083.
    赵菲. 共形相控阵天线分析综合技术与实验研究[D]. [博士论文], 国防科学技术大学, 2012.
    ZHAO Fei. Analysis and synthesis study of conformal phased antenna array and experiment[D]. [Ph.D. dissertation], National University of Defense Technology, 2012.
    哈林登著. 王尔杰, 等译. 计算电磁场的矩量法[M]. 北京: 国防工业出版社, 1981: 222-227.
    Harrington R F. Field Computation by Moment Methods[M]. Beijing: National Defense Industry Press, 1981: 222-227.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1116) PDF downloads(304) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return