Advanced Search
Volume 39 Issue 5
May  2017
Turn off MathJax
Article Contents
FU Xikai, XIANG Maosheng, WANG Bingnan, JIANG Shuai, YANG Yu. Time-varying Baseline Estimation Method for FMCW InSAR[J]. Journal of Electronics & Information Technology, 2017, 39(5): 1024-1029. doi: 10.11999/JEIT160763
Citation: FU Xikai, XIANG Maosheng, WANG Bingnan, JIANG Shuai, YANG Yu. Time-varying Baseline Estimation Method for FMCW InSAR[J]. Journal of Electronics & Information Technology, 2017, 39(5): 1024-1029. doi: 10.11999/JEIT160763

Time-varying Baseline Estimation Method for FMCW InSAR

doi: 10.11999/JEIT160763
  • Received Date: 2016-07-20
  • Rev Recd Date: 2016-11-02
  • Publish Date: 2017-05-19
  • For airborne dual-antenna FMCW InSAR systems, the time-varying baseline can be considerably high due to its low flight height, atmospheric turbulence, location and attitude errors and low accuracy of MEMS IMU, seriously affecting the DEM accuracy. To deal with this problem, a time-varying baseline estimation method for FMCW InSAR system is proposed. Firstly, the time-varying baseline derivative for each range gate using single look complex image data is established, and the space-variant model in range direction is established. Then the horizontal and vertical time-varying baseline derivative obtained using random sample consistent method is integrated. Finally, the proposed method is implemented on real experimental FMCW InSAR data, the effectiveness of proposed method is validated by comparing estimated results with high accuracy POS information.
  • loading
  • ZAUGG E C, HUDSON D L, and LONG D G. The BYU SAR: A small, student-built SAR for UAV operation[C]. Geoscience and Remote Sensing Symposium, Colorado, USA, 2006: 411-414.
    META A, HOOGEBOOM P, and LIGTHART L P. Signal Processing for FMCW SAR[J]. IEEE Transactions on Geoscience Remote Sensing, 2007, 45(11): 3519-3532. doi: 10.1109/TGRS.2007.906140.
    SIQUEIRA P, SCHROCK R, MILLETTE T, et al. An airborne 35 GHz radar interferometer in development at the university of Massachusetts[C]. Geoscience and Remote Sensing Symposium, Munich, Germany, 2012: 2933-2936.
    AGUASCA A, ACEVO-HERRERA R, BROQUETAS A, et al. ARBRES: light-weight CW/FM SAR sensors for small UAVs[J]. Journal of Sensors, 2013, 13(3): 3204-3216. doi: 10.3390/s130303204.
    FU K, SIQUEIRA P, and SCHROCK R. A university- developed 35 GHz airborne cross-track SAR interferometer: Motion compensation and ambiguity reduction[C]. Geoscience and Remote Sensing Symposium, Quebec, Canada, 2014: 2241-2244.
    SCANNAPIECO A F, RENGA A, and MOCCIA A. Preliminary study of a millimeter wave FMCW InSAR for UAS indoor navigation[J]. Journal of Sensors, 2015, 15(2): 2309-2335. doi: 10.3390/s150202309.
    SCANNAPIECO A F, RENGA A, and MOCCIA A. Compact millimeter wave FMCW InSAR for UAS indoor navigation[C]. IEEE AESS Workshop on Metrology for Aerospace, Benevento, Italy, 2015: 551-556.
    SCANNAPIECO A F, RENGA A, and MOCCIA A. Indoor operations by FMCW millimeter wave SAR onboard small UAS: A simulation approach[J]. Journal of Sensors, 2016, Article ID 4968476, 13 pages, doi: 10.1155/2016/4968476.
    LIU W, FENG H, YEE A S, et al. Premier results of the multi-rotor based FMCW synthetic aperture radar system[C]. IEEE Radar Conference, Philadelphia, USA, 2016: 1-4.
    WANG Y, TANG K, ZHANG Y, et al. A Ku-band 260mW FMCW synthetic aperture radar TRX with 1.48 GHz BW in 65 nm CMOS for micro-UAVs[C]. IEEE International Solid- State Circuits Conference, San Francisco, CA, USA, 2016: 240-241.
    庄晋升. 基于MEMS IMU的机载SAR运动补偿方法研究[D]. [硕士论文], 中国科学院大学, 2015.
    ZHUANG Jinsheng. Study on airborne SAR motion compensation method based on MEMS IMU[D]. [Master dissertation], The University of Chinese Academy of Sciences. 2015.
    JIA Gaowei, CHANG Wenge, LI Xiangyang, et al. A brief analysis of the motion compensation for FMCW SAR[C]. International Conference on Advances in Satellite and Space Communications, Venice, Italy, 2013: 52-57.
    CHANG Wenge, JIA Gaowei, LI Xiangyang, et al. A compact FMCW SAR real-time imaging system and its performance analysis[C]. IET International Radar Conference, Hangzhou, China, 2015: 1-4.
    ZHENG Shichao, LI Xiangyang, WANG Hui, et al. Signal processing for Ka-band FMCW miniature SAR/GMTI system[C]. International Radar Symposium, Dresden, Germany, 2015: 541-546.
    XING Mengdao, JIANG Xiuwei, WU Renbiao, et al. Motion compensation for UAV SAR based on raw radar data[J]. IEEE Transactions on Geoscience Remote Sensing, 2009, 47(8): 2870-2883. doi: 10.1109/TGRS.2009.2015657.
    BULLOCK R J, VOLES R, CURRIE A, et al. Two-look method for correction of roll errors in aircraft-borne interferometric SAR[J]. Electronics Letters, 1997, 33(18): 1581-1583. doi: 10.1049/el:19971056.
    SCHEIBER R and MOREIRA A. Coregistration of interferometric SAR images using spectral diversity[J]. IEEE Transactions on Geoscience Remote Sensing, 2000, 38(5): 2179-2191. doi: 10.1109/36.868876.
    PRATS P and MALLORQUI J J. Estimation of azimuth phase undulations with multisquint processing in airborne interferometric SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41(6): 1530-1533. doi: 10.1109/TGRS.2003.814140.
    PRATS P, REIGBER A, MALLORQUI J J, et al. Efficient detection and correction of residual motion errors in airborne SAR interferometry[C]. Geoscience and Remote Sensing Symposium, Anchorage, Alaska, 2004: 992-995.
    PRATS P, REIGBER A, and MALLORQUI J J. Interpolation-free coregistration and phase-correction of airborne SAR interferograms[J]. IEEE Geoscience Remote Sensing Letters, 2004, 36(2): 207-219. doi: 10.1109/LGRS. 2004.828181
    REIGBER A, PRATS P, and MALLORQUI J J. Refined Estimation of Time-Varying Baseline Errors in Airborne SAR Interferometry[J]. IEEE Geoscience Remote Sensing Letters, 2006, 3(1): 145-149. doi: 10.1109/LGRS.2005. 860482.
    MANCON S, MONTI GUARNIERI A, TEBALDINI S, et al. Orbital error estimation through multi-squint analysis[C]. European Conference on Synthetic Aperture Radar, Berlin, Germany, 2014: 1-4.
    MANCON S, TEBALDINI S, GUARNIERI A M, et al. Orbit accuracy estimation by multi-squint phase: First Sentinel-1 results[C]. Geoscience and Remote Sensing Symposium, Milan, Italy, 2015: 1276-1279.
    李焱磊. 机载差分干涉SAR运动补偿技术研究[D]. [博士论文], 中国科学院大学, 2013.
    LI Yanlei. Research on aotion compensation in airborne differential synthetic aperture radar interferometry[D]. [Ph.D dissertation], The University of Chinese Academy of Sciences, 2013.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1263) PDF downloads(415) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return