Citation: | HU Ying, HU Changjun, FU Shushen, HUANG Jianyi. Survey on Popularity Evolution Analysis and Prediction[J]. Journal of Electronics & Information Technology, 2017, 39(4): 805-816. doi: 10.11999/JEIT160743 |
WU F and HUBERMAN B A. Popularity, novelty and attention[C]. Proceedings of the 9th ACM Conference on Electronic Commerce, Chicago, 2008: 240-245. doi: 10.1145/ 1386790.1386828.
|
WU F and HUBERMAN B A. Novelty and collective attention[J]. Proceedings of the National Academy of Sciences, 2007, 104(45): 17599-17601. doi: 10.1073/pnas.0704916104.
|
HONG L, DAN O, and Davison B D. Predicting popular messages in twitter[C]. Proceedings of the 20th International Conference Companion on World Wide Web, Hyderabad, 2011: 57-58. doi: 10.1145/1963192.1963222.
|
YANG J and LESKOVEC J. Patterns of temporal variation in online media[C]. Proceedings of the 4th ACM International Conference on Web Search and Data Mining, Hong Kong, 2011: 177-186. doi: 10.1145/1935826.1935863.
|
吴信东, 李毅, 李磊. 在线社交网络影响力分析[J]. 计算机学报, 2014, 37(4): 735-751.
|
WU Xindong, LI Yi, and LI Lei. Influence analysis of online social networks[J]. Chinese Journal of Computers, 2014, 37(4): 735-751.
|
KEMPE D, KLEINBERG J, and TARDOS. Maximizing the spread of influence through a social network[C]. Proceedings of the 9th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Washington DC, 2003: 137-146. doi: 10.1145/956750.956769.
|
LERMAN K. Social information processing in news aggregation[J]. IEEE Internet Computing, 2007, 11(6): 16-28. doi 10.1109/mic.2007.136.
|
BORGHOL Y, ARDON S, CARLSSON N, et al. The untold story of the clones: content-agnostic factors that impact YouTube video popularity[C]. Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Beijing, 2012: 1186-1194. doi 10.1145/ 2339530.2339717.
|
KONG S, MEI Q, FENG L, et al. Predicting bursts and popularity of hashtags in real-time[C]. Proceedings of the 37th International ACM SIGIR Conference on Research and Development in Information Retrieval, Gold Coast, 2014: 927-930. doi: 10.1145/2600428.2609476.
|
HE X, GAO M, KAN M Y, et al. Predicting the popularity of Web 2.0 items based on user comments[C]. Proceedings of the 37th International ACM SIGIR Conference on Research and Development in Information Retrieval, Gold Coast, 2014: 233-242. doi 10.1145/2600428.2609558.
|
SZABO G and HUBERMAN B A. Predicting the popularity of online content[J]. Communications of the ACM, 2010, 53(8): 80-88. doi: 10.1145/1787234.1787254.
|
AGARWAL N, LIU H, TANG L, et al. Identifying the influential bloggers in a community[C]. Proceedings of the 2008 International Conference on Web Search and Data Mining, Palo Alto, 2008: 207-218. doi: 10.1145/1341531. 1341559.
|
BANDARI R, ASUR S, and HUBERMAN B A. The pulse of news in social media: Forecasting popularity[C]. Proceedings of the 6th International AAAI Conference on Web and Social Media, Dublin, 2012: 26-33.
|
CHATZOPOULOU G, SHENG C, and FALOUTSOS M. A first step towards understanding popularity in YouTube[C]. INFOCOM IEEE Conference on Computer Communications Workshops, San Diego, 2010: 1-6. doi 10.1109/infcomw. 2010.5466701.
|
ROY S D, MEI T, ZENG W, et al. Towards cross-domain learning for social video popularity prediction[J]. IEEE Transactions on Multimedia, 2013, 15(6): 1255-1267. doi 10.1109/tmm.2013.2265079.
|
JAMALI S and RANGWALA H. Digging Digg: Comment mining, popularity prediction, and social network analysis[C]. IEEE International Conference on Web Information Systems and Mining, Shanghai, 2009: 32-38. doi 10.1109/wism. 2009.15.
|
YIN P, LUO P, WANG M, et al. A straw shows which way the wind blows: ranking potentially popular items from early votes[C]. Proceedings of the 5th ACM International Conference on Web Search and Data Mining, Seattle, 2012: 623-632. doi: 10.1145/2124295.2124370.
|
CHA M, KWAK H, RODRIGUEZ P, et al. I tube, you tube, everybody tubes: Analyzing the world,s largest user generated content video system[C]. Proceedings of the 7th ACM SIGCOMM Conference on Internet Measurement, New York, 2007: 1-14. doi: 10.1145/1298306.1298309.
|
CRANE R and SORNETTE D. Robust dynamic classes revealed by measuring the response function of a social system[J]. Proceedings of the National Academy of Sciences, 2008, 105(41): 15649-15653. doi: 10.1073/pnas.0803685105.
|
CRANE R and SORNETTE D. Viral, quality, junk videos on YouTube: Separating content from noise in an information- rich environment[C]. AAAI Spring Symposium 2008: Social Information Processing, Stanford, 2008: 18-20.
|
FIGUEIREDO F. On the prediction of popularity of trends and hits for user generated videos[C]. Proceedings of the 6th ACM International Conference on Web Search and Data Mining, San Francisco, 2013: 741-746. doi: 10.1145/2433396. 2433489.
|
ASUR S, HUBERMAN B A, SZABO G, et al. Trends in social media: Persistence and decay[OL]. Available at SSRN 1755748, 2011. doi: 10.2139/ssrn.1755748.
|
FIGUEIREDO F, BENEVENUTO F, and ALMEIDA J M. The tube over time: Characterizing popularity growth of YouTube videos[C]. Proceedings of the 4th ACM International Conference on Web Search and Data Mining, Hong Kong, 2011: 745-754. doi: 10.1145/1935826.1935925.
|
CHENG J, ADAMIC L A, KLEINBERG J M, et al. Do cascades recur?[C]. Proceedings of the 25th International Conference on World Wide Web. Montreal, 2016: 671-681. doi: 10.1145/2872427.2882993.
|
MATSUBARA Y, SAKURAI Y, PRAKASH B A, et al. Rise and fall patterns of information diffusion: Model and implications[C]. Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Beijing, 2012: 6-14. doi: 10.1145/2339530.2339537.
|
YU H, XIE L, and SANNER S. The lifecycle of a YouTube video: Phases, content and popularity[C]. 9th International AAAI Conference on Web and Social Media, Oxford, 2015.
|
SALGANIK M J, DODDS P S, and WATTS D J. Experimental study of inequality and unpredictability in an artificial cultural market[J]. Science, 2006, 311(5762): 854-856. doi: 10.1126/science.1121066.
|
LERMAN K and GALSTYAN A. Analysis of social voting patterns on digg[C]. Proceedings of the First Workshop on Online Social Networks, Seattle, 2008: 7-12. doi: 10.1145/ 1397735.1397738.
|
CHANG B, ZHU H, GE Y, et al. Predicting the popularity of online serials with autoregressive models[C]. Proceedings of the 23rd ACM International Conference on Information and Knowledge Management, Shanghai, 2014: 1339-1348. doi: 10.1145/2661829.2662055.
|
PINTO H, ALMEIDA J M, and GONCALVES M A. Using early view patterns to predict the popularity of YouTube videos[C]. Proceedings of the 6th ACM International Conference on Web Search and Data Mining, San Francisco, 2013: 365-374. doi: 10.1145/2433396.2433443.
|
TAN Z, WANG Y, ZHANG Y, et al. A novel time series approach for predicting the long-term popularity of online videos[J]. IEEE Transactions on Broadcasting, 2016, 62(2): 436-445. doi: 10.1109/TBC.2016.2540522.
|
WU J, ZHOU Y, CHIU D M, et al. Modeling dynamics of online video popularity[J]. IEEE Transactions on Multimedia, 2016, 18(9): 1882-1895. doi: 10.1109/TMM.2016.2579600.
|
LI H, MA X, WANG F, et al. On popularity prediction of videos shared in online social networks[C]. Proceedings of the 22nd ACM International Conference on Information and Knowledge Management, San Francisco, 2013: 169-178. doi: 10.1145/2505515.2505523.
|
TATAR A, LEGUAY J, ANTONIADIS P, et al. Predicting the popularity of online articles based on user comments[C]. Proceedings of the International Conference on Web Intelligence, Mining and Semantics, Sogndal, 2011: 1-8. doi: 10.1145/1988688.1988766.
|
SIERSDORFER S, CHELARU S, NEJDL W, et al. How useful are your comments?: Analyzing and predicting YouTube comments and comment ratings[C]. Proceedings of the 19th International Conference on World Wide Web, Raleigh, 2010: 891-900. doi: 10.1145/1772690.1772781.
|
HE X, GAO M, KAN M Y, et al. Predicting the popularity of web 2.0 items based on user comments[C]. Proceedings of the 37th International ACM SIGIR Conference on Research and Development in Information Retrieval, Gold Coast, 2014: 233-242. doi: 10.1145/2600428.2609558.
|
MA Z, SUN A, and CONG G. On predicting the popularity of newly emerging hashtags in twitter[J]. Journal of the American Society for Information Science and Technology, 2013, 64(7): 1399-1410. doi: 10.1002/asi.22844.
|
KHOSLA A, DAS SARMA A, and HAMID R. What makes an image popular?[C]. Proceedings of the 23rd International Conference on World Wide Web, Seoul, 2014: 867-876. doi 10.1145/2566486.2567996.
|
BAO P, SHEN H W, HUANG J, et al. Popularity prediction in microblogging network: A case study on sina weibo[C]. Proceedings of the 22nd International Conference on World Wide Web Companion, Rio de Janeiro, 2013: 177-178. doi 10.1145/2487788.2487877.
|
LERMAN K and HOGG T. Using a model of social dynamics to predict popularity of news[C]. Proceedings of the 19th International Conference on World Wide Web, Raleigh, 2010: 621-630. doi: 10.1145/1772690.1772754.
|
ZHAO Q, ERDOGDU MA, HE HY, et al. SEISMIC: A self-exciting point process model for predicting tweet popularity[C]. Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Sydney, 2015: 1513-1522. doi: 10.1145/2783258. 2783401.
|
LEE J G, MOON S, and SALAMATIAN K. An approach to model and predict the popularity of online contents with explanatory factors[C]. 2010 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology, London, 2010, 1: 623-630. doi: 10.1109/WI-IAT.2010.209.
|
AHMED M, SPAGNA S, HUICI F, et al. A peek into the future predicting the evolution of popularity in user generated content[C]. Proceedings of the 6th ACM International Conference on Web Search and Data Mining, San Francisco, 2013: 607-616. doi: 10.1145/2433396.2433473.
|
FIGUEIREDO F, ALMEIDA J M, GONCALVES M A, et al. TrendLearner: Early prediction of popularity trends of user generated content[J]. Information Sciences, 2016: 349-350, 172-187. doi: 10.1016/j.ins.2016.02.025.
|
GRUHL D, GUHA R, LIBEN-NOWELL D, et al. Information diffusion through blogspace[C]. Proceedings of the 13th International Conference on World Wide Web, New York, 2004: 491-501. doi: 10.1145/988672.988739.
|
YANG J and LESKOVEC J. Modeling information diffusion in implicit networks[C]. IEEE 10th International Conference on Data Mining, Sydney, 2010: 599-608. doi: 10.1109/icdm. 2010.22.
|
ZHAO J, WU J, FENG X, et al. Information propagation in online social networks: A tie-strength perspective[J]. Knowledge and Information Systems, 2012, 32(3): 589-608. doi: 10.1007/s10115-011-0445-x.
|
CHENG J, ADAMIC L, DOW P, et al. Can cascades be predicted?[C]. Proceedings of the 23rd International Conference on World Wide Web, Seoul, 2014: 925-936. doi: 10.1145/2566486.2567997.
|
KUPAVSKII A, OSTROUMOVA L, UMNOV A, et al. Prediction of retweet cascade size over time[C]. Proceedings of the 21st ACM International Conference on Information and Knowledge Management, Sheraton, 2012: 2335-2338. doi: 10.1145/2396761.2398634.
|
ARDON S, BAGCHI A, MAHANTI A, et al. Spatio- temporal and events based analysis of topic popularity in twitter[C]. Proceedings of the 22nd ACM International Conference on Information and Knowledge Management, San Francisco, 2013: 219-228. doi: 10.1145/2505515.2505525.
|
WANG S, YAN Z, HU X, et al. Burst time prediction in cascades[C]. 29th AAAI Conference on Artificial Intelligence, Austin, 2015: 325-331.
|