Advanced Search
Volume 38 Issue 12
Jan.  2017
Turn off MathJax
Article Contents
FAN Xueman, HU Shengliang, HE Jingbo. Feature Extraction and Selection of Full Polarization HRRP in Target Recognition Process of Maritime Surveillance Radar[J]. Journal of Electronics & Information Technology, 2016, 38(12): 3261-3268. doi: 10.11999/JEIT160722
Citation: FAN Xueman, HU Shengliang, HE Jingbo. Feature Extraction and Selection of Full Polarization HRRP in Target Recognition Process of Maritime Surveillance Radar[J]. Journal of Electronics & Information Technology, 2016, 38(12): 3261-3268. doi: 10.11999/JEIT160722

Feature Extraction and Selection of Full Polarization HRRP in Target Recognition Process of Maritime Surveillance Radar

doi: 10.11999/JEIT160722
Funds:

The National Natural Science Foundation of China (61401493), The National Ministries Foundation of China (9140A01010415JB11002)

  • Received Date: 2016-07-07
  • Rev Recd Date: 2016-11-01
  • Publish Date: 2016-12-19
  • Making full and effective use of target polarization information from High Resolution Range Profile (HRRP) is a hot issue for improving the recognition performance of maritime surveillance radar. A HRRP database with seven maritime targets classes from various aspect angles is established, on which thirty-nine features from four categories are defined. A novel feature selection method based on the Normalized Mutual Information (NMI) and Simulated Annealing (SA) algorithm is presented, named as NMI-SA. The effectiveness of the NMI-SA is proved by comparison with three other methods using HRRP dataset and eight from UCI machine learning repository. Finally, the NMI-SA is applied to the HRRP dataset to find twenty-five high discriminant and low redundancy features.
  • loading
  • 冯博, 陈渤, 王鹏辉, 等. 利用稳健字典学习的雷达高分辨距离像目标识别算法[J]. 电子与信息学报, 2015, 37(6): 1457-1462. doi: 10.11999/JEIT141227.
    FENG Bo, CHEN Bo, WANG Penghui, et al. Radar high resolution range profile target recognition algorithm via stable dictionary learning[J]. Journal of Electronics Information Technology, 2015, 37(6): 1457-1462. doi: 10. 11999/JEIT141227.
    郭尊华, 李达, 张伯彦. 雷达高距离分辨率一维像目标识别[J]. 系统工程与电子技术, 2013, 35(1): 53-60. doi: 10.3969/j.issn. 1001-506X.2013.01.09.
    GUO Zunhua, LI Da, and ZHANG Boyan. Survey of radar target recognition using one-dimensional high range resolution profiles[J]. Systems Engineering and Electronics, 2013, 35(1): 53-60. doi: 10.3969/j.issn.1001-506X.2013.01.09.
    PICHER C and KHOTANZAD A. Nonlinear classifier combination for a maritime target recognition task[C]. Proceedings of the IEEE Radar Conference, Pasadena, 2009: 873-877. doi: 10.1109/RADAR.2009.4976923.
    刘盛启, 占荣辉, 翟庆林, 等. 基于联合稀疏性的多视全极化HRRP目标识别方法[J]. 电子与信息学报, 2016, 38(7): 1724-1730. doi: 10.11999/JEIT151019.
    LIU Shengqi, ZHAN Ronghui, ZHAI Qinglin, et al. Multi- view polarization HRRP target recognition based on joint sparsity[J]. Journal of Electronics Information Technology, 2016, 38(7): 1724-1730. doi: 10.11999/JEIT151019.
    BERIZZI F, MARTORELLA M, CAPRIA A, et al. H/ polarimetric features for man-made target classification[C]. Proceedings of the IEEE Radar Conference, Rome, 2008: 1-6. doi: 10.1109/RADAR.2008.4721003.
    杨磊, 王晓丹, 张玉玺, 等. 基于多极化特征提取和SVM的目标识别方法[J]. 现代防御技术, 2012, 40(5): 150-155. doi: 10.3969/j.issn.1009-086x.2012.05.029.
    YANG Lei, Wang Xiaodan, ZHANG Yuxi, et al. Radar target recognition approach based on multi polarization multi target feature extraction and SVM[J]. Modern Defence Technology, 2012, 40(5): 150-155. doi: 10.3969/j.issn.1009-086x.2012.05. 029.
    雷蕾, 王晓丹, 邢雅琼, 等. 结合SVM和DS证据理论的多极化HRRP分类研究[J]. 控制与决策, 2013, 28(6): 861-866. doi: 10.13195/j.cd.2013.06.63.leil.011.
    LEI Lei, WANG Xiaodan, XING Yaqiong, et al. Multi- polarized HRRP classification by SVM and DS evidence theory[J]. Control and Decision, 2013, 28(6): 861-866. doi: 10.13195/j.cd.2013.06.63.leil.011.
    郭雷. 宽带雷达目标极化特征提取与核方法识别研究[D]. [博士论文], 国防科学技术大学, 2009: 15-49.
    GUO Lei. Wideband radar target polarimetric feature extraction and recognition method based on kernel method [D]. [Ph.D. dissertation], National University of Defense Technology, 2009: 15-49.
    LIU H, SUN J, LIU L, et al. Feature selection with dynamic mutual information[J]. Pattern Recognition, 2009, 42(7): 1330-1339. doi: 10.1016/j.patcog.2008.10.028.
    UNLER A, MURAT A, and CHINNAM R B. mr 2 PSO : a maximum relevance minimum redundancy feature selection method based on swarm intelligence for support vector machine classification[J]. Information Sciences, 2011, 181(20): 4625-4641. doi: 10.1016/j.ins.2010.05.037.
    GARCIA M, GOMEZ F, MELIAN B, et al. High-dimensional feature selection via feature grouping: a variable neighborhood search approach[J]. Information Sciences, 2016, 326(C): 102-118. doi: 10.1016/j.ins.2015.07.041.
    BROWN G, POCOCK A, ZHAO M J, et al. Conditional likelihood maximization: a unifying framework for information theoretic feature selection[J]. Journal of Machine Learning Research, 2012, 13(1): 27-66.
    LYSIAK R, KURZYNSKI M, and WOLOSZYNSKI T. Optimal selection of ensemble classifiers using measures of competence and diversity of base classifiers[J]. Neurocomputing, 2014, 126(1): 29-35. doi: 10.1016/j.neucom. 2013.01.052.
    KWAK N and CHOI C H. Input feature selection for classification problems[J]. IEEE Transactions on Neural Networks, 2002, 13(1): 143-159. doi: 10.1109/72.977291.
    PENG H, LONG F, and DING C. Feature selection based on mutual information: criteria of max-dependency, max- relevance, and min-redundancy[J]. IEEE Transactions on Pattern Analysis Machine Intelligence, 2005, 27(8): 1226-1238. doi: 10.1109/TPAMI.2005.159.
    ESTEVEZ P A, TESMER M, PEREZ C A, et al. Normalized mutual information feature selection[J]. IEEE Transactions on Neural Networks, 2009, 20(2): 189-201. doi: 10.1109/TNN. 2008.2005601.
    ISAKOV S V, ZINTCHENKO I N, RONNOW T F, et al. Optimised simulated annealing for icing spin glasses[J]. Computer Physics Communications, 2015, 192: 265-271. doi: 10.1016/j.cpc.2015.02.015.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1651) PDF downloads(350) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return