Advanced Search
Volume 39 Issue 6
Jun.  2017
Turn off MathJax
Article Contents
ZHOU Lijun, OUYANG Shan, LIAO Guisheng, JIN Liangnian. Estimation of Length and Orientation of Subsurface Thin-wire Structures Based on Transient Electromagnetic Responses[J]. Journal of Electronics & Information Technology, 2017, 39(6): 1424-1431. doi: 10.11999/JEIT160718
Citation: ZHOU Lijun, OUYANG Shan, LIAO Guisheng, JIN Liangnian. Estimation of Length and Orientation of Subsurface Thin-wire Structures Based on Transient Electromagnetic Responses[J]. Journal of Electronics & Information Technology, 2017, 39(6): 1424-1431. doi: 10.11999/JEIT160718

Estimation of Length and Orientation of Subsurface Thin-wire Structures Based on Transient Electromagnetic Responses

doi: 10.11999/JEIT160718
Funds:

The National Natural Science Foundation of China (61371186, 61162007), Guangxi Natural Science Foundation (2013GXNSFFA019004)

  • Received Date: 2016-07-07
  • Rev Recd Date: 2016-12-15
  • Publish Date: 2017-06-19
  • It is particularly important to estimate the geometric features of buried pipe cables in urban construction and municipal infrastructure maintenance. For this kind of subsurface thin-wire structure targets, a method for estimation of the length and orientation of a target based on transient electromagnetic responses is proposed. In this method, a time delay difference model of the backscattering responses from such thin-wire structures illuminated by electromagnetic wave at Brewsters angle with horizontal polarization is established. By analyzing the time-frequency distribution of the transient responses, the relationship between the resonant state and the target length is established and the length of the target is estimated. The energy change between the early time responses and late time resonances is applied to determining the time sequence of the arrival of the electromagnetic wave to the target. Then the target orientation is estimated by the time delay difference of early time responses. Numerical simulation results show that the proposed method is effective in the case of the direction of electric field close to the target axial direction. Meanwhile, the proposed method is robust to noise, and can be applied to length estimation forSNR5 dB and orientation estimation for SNR10 dB.
  • loading
  • DINGES M, AUSTIN R, and HAVEN J. Non-invasive Non-destructive Assessment of Underground Pipe[M]. Colorado: Amer Water Works Assn, 2002: 1-8.
    JOSHI N. Prestressed Concrete Pipes and Pipelines[M]. Oxford: Alpha Science International Ltd., 2012: 1-10.
    王强, 苗金明. 地下管网检测技术[M]. 北京: 机械工业出版社, 2014: 1-6.
    WANG Qiang and MIAO Jinming. Underground Pipe Network Detection Technology[M]. Beijing: Machinery Industry Press, 2014: 1-6.
    YANG Hongwei, YANG Zekun, and PEI Yukun. Ground- penetrating radar for soil and underground pipelines using the forward modeling simulation method[J]. Optik, 2014, 125(23): 7075-7079. doi: 10.1016/j.ijleo.2014.08.099.
    曾昭发, 刘四新, 王者江, 等. 探地雷达方法原理及应用[M]. 北京: 科学出版社, 2006: 71.
    ZENG Zhaofa, LIU Sixin, WANG Zhejiang, et al. Principle and Application of Ground Penetrating Radar[M]. Beijing: Science Press, 2006: 71.
    SNICKER E, MIKHNEV V, and OLKKONEN M. Discrimination of buried objects in impulse GPR using phase retrieval technique[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(2): 1001-1007. doi: 10.1109/TGRS. 2014.2331427.
    TSOFLIAS G, PERLL C, BAKER M, et al. Cross-polarized GPR imaging of fracture flow channeling[J]. Journal of Earth Science, 2015, 26(6): 776-784. doi: 10.1007/s12583-015-0612- 1.
    LIU Hai, ZHAO Jianguo, and SATO M. A hybrid dual- polarization GPR system for detection of linear objects[J]. IEEE Antennas and Wireless Propagation Letters, 2014, 14: 317-320. doi: 10.1109/LAWP.2014.2363826.
    CHEN K, NYQUIST D, ROTHWELL E, et al. Radar target discrimination by convolution of radar return with extinction pulse and single mode extraction signals[J]. IEEE Transactions on Antennas and Propagation, 1986, 34(7): 896-904. doi: 10.1109/TAP.1986.1143908.
    LI Fenghua, LIU Qinghuo, and SONG Linping. Three-dimensional reconstruction of objects buried in layered media[C]. IEEE Antennas and Propagation Society International Symposium, California, USA, 2004: 193-196. doi: 10.1109/APS.2004.1329592.
    DANIELE V and LOMBARDI G. Arbitrarily oriented perfectly conducting wedge over a dielectric half-space: diffraction and total far field[J]. IEEE Transactions on Antennas and Propagation, 2016, 64(4): 1416-1433. doi: 10.1109/TAP.2016.2524412.
    CHEN C. Electromagnetic resonances of immersed dielectric spheres[J]. IEEE Transactions on Antennas and Propagation, 1998, 46(7): 1074-1083. doi: 10.1109/8.704811.
    LUI H, PERSSON M, and SHULEY N. Joint time-frequency analysis of transient electromagnetic scattering from a subsurface target[J]. IEEE Antennas and Propagation Magazine, 2012, 54(5): 109-130. doi: 10.1109/MAP.2012. 6348122.
    JANG S, CHOI W, SARKAR T, et al. Exploiting early time response using the fractional Fourier transform for analyzing transient radar returns[J]. IEEE Transactions on Antennas and Propagation, 2004, 52(11): 3109-3120. doi: 10.1109/TAP. 2004.835165.
    周智敏, 金添, 等. 超宽带地表穿透成像雷达[M]. 北京: 国防工业出版社, 2013: 154-180.
    ZHOU Zhimin, JIN Tian, et al. Ultrawideband Ground Penetrating Imaging Radar[M]. Beijing: National Defense Industry Press, 2013: 154-180.
    BOWMAN J, SENIOR T, and USLENGHI P. Electromagnetic and Acoustic Scattering by Simple Shapes [M]. New York, John Wiley Sons, INC. 1969: 92-127.
    ALBANI M, CARLUCCIO G, and PATHAK P. A uniform geometrical theory of diffraction for vertices formed by truncated curved wedges[J]. IEEE Transactions on Antennas and Propagation, 2015, 63(7): 3136-3143. doi: 10.1109/TAP. 2015.2427877.
    PATHAK P, CARLUCCIO G, and ALBANI M. The uniform geometrical theory of diffraction and some of its applications [J]. IEEE Antennas and Propagation Magazine, 2013, 55(4): 41-69. doi: 10.1109/MAP.2013.6645140.
    XIAO Gaobiao, TIAN Xuezhe, LUO Wei, et al. Impulse responses and the late time stability properties of time-domain integral equations[J]. IET Microwaves, Antennas Propagation, 2015, 9(7): 603-610. doi: 10.1049/ iet-map.2014.0318.
    CHAD O, HARGRAVE I, VAUGHAN L, et al. Late-time estimation for resonance-based radar target identification[J]. IEEE Transactions on Antennas and Propagation, 2014, 62(11): 5865-5871. doi: 10.1109/TAP.2014.2350507.
    SUN Meng, BASTARD C, PINEL N, et al. Road surface layers geometric parameters estimation by ground penetrating radar using estimation of signal parameters via rotational invariance techniques method[J]. IET Radar, Sonar Navigation, 2016, 10(3): 603-609. doi: 10.1049/iet- rsn.2015.0374.
    粟嘉, 陶海红, 饶烜, 等. 时频面滑窗掩膜的多分量信号高效重构算法[J]. 电子与信息学报, 2015, 37(4): 804-810. doi: 10.11999/JEIT140511.
    SU Jia, TAO Haihong, RAO Xuan, et al. An efficient multi- component signals reconstruction algorithm using masking technique based on sliding window in time-frequency plane[J]. Journal of Electronics Information Technology, 2015, 37(4): 804-810. doi: 10.11999/JEIT140511.
    HUSSEIN R, SHABAN K, and EL-HAG A. Wavelet transform with histogram based threshold estimation for online partial discharge signal denoising[J]. IEEE Transactions on Instrumentation and Measurement, 2015, 64(12): 3601-3614. doi: 10.1109/TIM.2015.2454651.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1110) PDF downloads(382) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return