Citation: | LIU Xiaoqing, XU Jin. Kempe Equivalence of Colorings of 4-regular Graphs[J]. Journal of Electronics & Information Technology, 2017, 39(5): 1233-1244. doi: 10.11999/JEIT160716 |
KEMPE A B. On the geographical problem of the four colors[J]. American Journal of Mathematics, 1879, 2(3): 193-200. doi: 10.2307/2369235.
|
MUHLENTHALER M and WANKA R. The connectedness of clash-free timetables[C]. 10th International Conference of the Practice and Theory of Automated Timetabling, York, United Kingdom, 2014: 26-29.
|
WANG J S, SWENDSEN R H, and KOTECKY R. Antiferromagnetic potts models[J]. Physical Review Letters, 1989, 63(2): 109-112. doi: 10.1103/PhysRevLett.63.109.
|
WANG J S, SWENDSEN R H, and KOTECKY R. Three- state antiferromagnetic potts models: A Monte Carlo study[J]. Physical Review B, 1990, 42(4): 2465-2474. doi: 10.1103/ PhysRevB.42.2465.
|
VIGODA E. Improved bounds for sampling colorings[J]. Journal of Mathematical Physics, 2000, 41(3): 51-59. doi: 10.1063/1.533196.
|
FISK S. Geometric coloring theory[J]. Advances in Mathematics, 1977, 24(3): 298-340. doi: 10.1016/0001-8708 (77)90061-5.
|
MEYNIEL H. Les 5-colorations d'un graphe planaire forment une classe de commutation unique[J]. Journal of Combinatorial Theory Series B, 1978, 24(3): 251-257. doi: 10.1016/0095-8956(78)90042-4.
|
MOHAR B. Kempe Equivalence of Colorings[M]. Graph Theory in Paris. Birkhuser Basel, 2006: 287-297. doi: 10.1007/978-3-7643-7400-6_22.
|
VERGNAS M L and MEYNIEL H. Kempe classes and the Hadwiger conjecture[J]. Journal of Combinatorial Theory Series B, 1981, 31(1): 95-104. doi: 10.1016/S0095-8956(81) 80014-7.
|
BERTSCHI M E. Perfectly contractile graphs[J]. Journal of Combinatorial Theory, Series B, 1990, 50(2): 222-230. doi: 10.1016/0095-8956(90)90077-D.
|
MEYNIEL H. The graphs whose odd cycles have at least two chords[J]. Annals of Discrete Mathematics, 1984, 88(21): 115-119. doi: 10.1016/S0304-0208(08)72927-X.
|
FEGHALI C, JOHNSON M, and PAULUSMA D. Kempe cquivalence of colourings of cubic graphs[J]. European Journal of Combinatorics, 2017, 59(2): 1-10. doi: 10.1016/ j.ejc.2016.06.008.
|
MCDONALD J, MOHAR B, and SCHEIDE D. Kempe equivalence of edge-colorings in subcubic and subquartic graphs[J]. Journal of Graph Theory, 2012, 70(2): 226-239. doi: 10.1002/jgt.20613.
|
BELCASTRO S M and HAAS R. Counting edge-Kempe- equivalence classes for 3-edge-colored cubic graphs[J]. Discrete Mathematics, 2014, 325(13): 77-84. doi: 10.1016/j. disc.2014.02.014.
|
许进. 极大平面图的结构与着色理论(2)多米诺构形与扩缩运算[J]. 电子与信息学报, 2016, 38(6): 1271-1327. doi: 10.11999 /JEIT160224.
|
XU J. Theory on structure and coloring of maximal planar graphs (2) Domino configurations and extending- ccontracting operations[J]. Journal of Electronics Information Technology, 2016, 38(6): 1271-1327. doi: 10. 11999/JEIT160224.
|
许进. 极大平面图的结构与着色理论(4)-运算与Kempe等价类[J]. 电子与信息学报, 2016, 38(7): 1557-1585. doi: 10. 11999/JEIT160483.
|
XU J. Theory on structure and coloring of maximal planar graphs (4):-operations and Kempe equivalent classes[J]. Journal of Electronics Information Technology, 2016, 38(7): 1557-1585. doi: 10.11999/JEIT160483.
|