Advanced Search
Volume 39 Issue 5
May  2017
Turn off MathJax
Article Contents
PENG Huaiyun, WANG Yuanxin, PAN Weiyan, GUO Lixin, ZHANG Hongqi, CHEN Yu. Induced Fields Produced on Iron Rotation Long Ellipsoid Cavity under Uniform Constant Magnetic Field[J]. Journal of Electronics & Information Technology, 2017, 39(5): 1250-1255. doi: 10.11999/JEIT160683
Citation: PENG Huaiyun, WANG Yuanxin, PAN Weiyan, GUO Lixin, ZHANG Hongqi, CHEN Yu. Induced Fields Produced on Iron Rotation Long Ellipsoid Cavity under Uniform Constant Magnetic Field[J]. Journal of Electronics & Information Technology, 2017, 39(5): 1250-1255. doi: 10.11999/JEIT160683

Induced Fields Produced on Iron Rotation Long Ellipsoid Cavity under Uniform Constant Magnetic Field

doi: 10.11999/JEIT160683
Funds:

The National 863 Program of China (2015SQ712378, (2015SQ712220), China Electronics Technology Group Corporation National Key Laboratory Special Fund (A171501023)

  • Received Date: 2016-06-29
  • Rev Recd Date: 2016-12-30
  • Publish Date: 2017-05-19
  • The shape of the submarine is idealized as a rotation symmetrical long ellipsoid cavity in order to study the induced fields around the submarine. The expressions of the induced magnetic fields in inside and outside cavity are derived. The contour distributions of the total induced magnetic field and each component on the cavity along different latitudes, different location directions and different detection heights are analyzed and discussed by the analytical method under the uniform constant magnetic field. The calculation results indicate that the induced magnetic fields will gradually die down along with the increase of the propagation distance. The induced magnetic field is prominent along the cavity longitudinal direction (z component), while it is minimum along the cavity vertical direction (x component). The total induced magnetic field and each component detected by the magnetometer at middle latitude can be more easily detected than those at high latitude. While their detection ranges change very little along with the increase of the height. It can be more easily detected when the cavity is placed along the south and north direction.
  • loading
  • 陈宇沁, 周宏威, 袁建生. 基于磁异常检测的潜艇探测探头类型分析[J]. 电测与仪表, 2015, 52(11): 20-24. doi: 10.3969/ j.issn.1001-1390.2015.11.005.
    CHEN Yuqin, ZHOU Hongwei, and YUAN Jiansheng. Analysis of different types of magnetic probes for submarine detection based on magnetic anomaly[J]. Electrical Measurement Instrumentation, 2015, 52(11): 20-24. doi: 10.3969/j.issn.1001-1390.2015.11.005.
    HAO Liling, LI Gang, and LIN Ling. Optimization of measurement arrangements for magnetic detection electrical impedance tomography[J]. IEEE Transactions on Bio-Medical Engineering, 2014, 61(2): 444-452. doi: 10.1109/ TBME.2013.2280632.
    陈正想, 卢俊杰. 弱磁探测技术发展现状[J]. 水雷战与舰船防护, 2011, 19(4): 1-5.
    CHEN Zhengxiang and LU Junjie. Current development of weak magnetic detection[J]. Mine Warfare Ship Self-Defence, 2011, 19(4): 1-5.
    崔国恒, 于德新. 非声探潜技术现状及其对抗措施[J]. 火力与指挥控制, 2007, 32(12): 10-13. doi: 10.3969/j.issn.1002-0640. 2007.12.003.
    CUI Guoheng and YU Dexin. Status quo of non-acoustics antisubmarine detecting technology and its countermeasures[J]. Fire Control and Command Control, 2007, 32(12): 10-13. doi: 10.3969/j.issn.1002-0640.2007. 12.003.
    艾艳辉, 赵治平. 非声探测技术面面观[J]. 水雷战与舰船防护, 2003(3): 43-46.
    AI Yanhui and ZHAO Zhiping. Outlook of non-acoustics submarine detection[J]. Mine Warfare Ship Self-Defence, 2003(3): 43-46.
    吴奕初, 胡占成, 刘海林, 等. 光磁共振实验测量地磁场方法的探究[J]. 物理实验, 2016, 36(4): 1-6. doi: 10.3969/j.issn. 1005-4642.2016. 04.001.
    WU Yichu, HU Zhancheng, LIU Hailin, et al. Measuring the geomagnetic field using optical magnetic resonance[J]. Physics Experimentation, 2016, 36(4): 1-6. doi: 10.3969/j.issn. 1005-4642.2016.04.001.
    冯亚敏, 陈聪, 冯汉臣. 潜艇腐蚀相关静态电磁场分布规律的实验验证[J]. 武汉理工大学学报(交通科学与工程版), 2016, 40(1): 140-144. doi: 10.3963/j.issn.2095-3844.2016.01.029.
    FENG Yamin, CHEN Cong, and FENG Hanchen. Experimental verification of the distribution regularities of the static corrosion-related-electromagnetic field produced by a submarine[J]. Journal of Wuhan University of Technology (Transportation Science Engineering), 2016, 40(1): 140-144. doi: 10.3963/j.issn.2095-3844.2016.01.029.
    衣军, 张朝阳, 虞伟乔. 基于地磁模拟的潜艇感应磁场测量[J]. 上海海事大学学报, 2015, 36(1): 61-64.
    YI Jun, ZHANG Chaoyang, and YU Weiqiao. Measurement of submarines induced magnetic field based on geomagnetic simulation[J]. Journal of Shanghai Maritime University, 2015, 36(1): 61-64.
    BRUNOTTE X, MEUNIER G, and BONGIRAUD J. Ship magnetizations modelling by the finite element method[J]. IEEE Transactions on Magnetics, 1993, 29(2): 1970-1975. doi: 10.1109/20.250795.
    NGUYEN T S, GUICHON J M, CHADEBEC O, et al. Ships magnetic anomaly computation with integral equation and fast multipole method[J]. IEEE Transactions on Magnetics, 2011, 47(5): 1414-1417. doi: 10.1109/TMAG.2010.2091626.
    TANRISEVEN S, CAN H, TOPAL U, et al. A low cost and simple fluxgate magnetometer implementation[C]. International Conference on Synthesis, Modeling, Analysis, and Simulation Methods and Applications to Circuit Design, Canada, 2015: 7-9.
    林钢, 杨会平, 白彦峥, 等. 高精度空间磁通门磁力计[J]. 华中科技大学学报(自然科学版), 2005, 33(12): 61-63. doi: 10.3321/j.issn.1671-4512.2005.12.019.
    LIN Gang, YANG Huiping, BAI Yanzheng, et al. Space fluxgate magnetometer with high precision[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2005, 33(12): 61-63. doi: 10.3321/ j.issn.1671-4512.2005.12.019.
    WANG Jiabo and CHEN Xi. A fluxgate magnetometer for navigation and sensing: noise character and digital filtering[C]. Sensors, IEEE, Canada, 2015: 1-4. doi: 10.1109/ICSENS.2015.7370466.
    张敏, 杨福喜, 张文来, 等. 磁通门磁力仪探头定向角度与准确度标定分析[J]. 地震地磁观测与研究, 2015, 36(6): 102-108. doi: 10.3969/j.issn.1003-3246.2015.05.017.
    ZHANG Min, YANG Fuxi, ZHANG Wenlai, et al. Preliminary analysis of directional angle and measurement accuracy on the fluxgate magnetometer probe[J]. Seismological and Geomagnetic Observation and Research, 2015, 36(6): 102-108. doi: 10.3969/j.issn.1003-3246.2015. 05.017.
    ROBBES D. Highly sensitive magnetometers-a review[J]. Sensors and Actuators A-Physical, 2006, 129(1): 86-93. doi: 10.1016/j.sna 2005.11.023.
    潘威炎. 长波超长波极长波传播[M]. 成都:电子科技大学出版社, 2004: 40-101.
    PAN Weiyan. Long Wave Beyond Long Wave Extremely Long Wave Propagation[M]. Chengdu: Electric Science and Technology University Press, 2004: 40-101.
    MOON P and SPENCER D E. Field Theory Handbook[M]. Berlin: Springer-Verlag, 1961: 28-30.
    WANG Yuanxin, ZHAO Zhenwei, WU Zhensen, et al. Fast convergence algorithm for earthquake prediction using electromagnetic fields excited by SLF/ELF horizontal magnetic dipole and Schumann resonance[J]. Wireless Personal Communication, 2014, 77(2): 1039-1053. doi: 10.1007/sl1277-013-1553-6.
    WANG Yuanxin, JIN Ronghong, GENG Junping, et al. Exact SLF/ELF underground HED field strengths in earth-ionosphere cavity and Schumann resonance[J]. IEEE Transactions on Antennas and Propagation, 2011, 59(8): 3031-3039. doi: 10.1109/TAP.2011.2158952.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1063) PDF downloads(300) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return