Advanced Search
Volume 39 Issue 5
May  2017
Turn off MathJax
Article Contents
CHEN Qiang, XU Jun, NIU Sijie. Retinal Nerve Fiber Layer Segmentation of Spectral Domain Optical Coherence Tomography Images Based on Random Forest[J]. Journal of Electronics & Information Technology, 2017, 39(5): 1101-1108. doi: 10.11999/JEIT160663
Citation: CHEN Qiang, XU Jun, NIU Sijie. Retinal Nerve Fiber Layer Segmentation of Spectral Domain Optical Coherence Tomography Images Based on Random Forest[J]. Journal of Electronics & Information Technology, 2017, 39(5): 1101-1108. doi: 10.11999/JEIT160663

Retinal Nerve Fiber Layer Segmentation of Spectral Domain Optical Coherence Tomography Images Based on Random Forest

doi: 10.11999/JEIT160663
Funds:

The National Natural Science Foundation of China (61671242), The Special Funds of Fundamental Research for the Central Universities (30920140111004), Six Big Talent Peals (2014-SWYY-024), The Open Fund Project of Fujian Provincial Key Laboratory of Information Processing and Intelligent Control (Minjiang University)(MJUKF201706)

  • Received Date: 2016-06-24
  • Rev Recd Date: 2017-03-23
  • Publish Date: 2017-05-19
  • Spectral Domain Optical Coherence Tomography (SD-OCT) imaging technique is widely used in the diagnosis of ophthalmology diseases. The segmentation of retinal layers plays a very important role in the diagnosis of glaucoma. In this paper, a random forest classifier is used which is trained by twelve different features to find the boundaries between layers. Whats more, the relative gray feature and the neighbor features are used to solve the problem of large errors under the condition of uneven illumination. In the last, the segmentation results of the proposed algorithm, a traditional algorithm and Iowa segmentation software on ten sets of retinal images are compared with manual segmentation, and the average absolute boundary errors are 9.202.57m, 11.332.99m, 10.273.01m, respectively. The experiments show that the proposed algorithm can segment the Retinal Never Fiber Layer (RNFL) better.
  • loading
  • OJIMA T, TANABE T, HANGAI M, et al. Measurement of retinal nerve fiber layer thickness and macular volume forglaucoma detection using optical coherence tomography[J]. Japanese Journal of Ophthalmology, 2007, 51(3): 197-203. doi: 10.1111/cxo.12366.
    牛四杰, 陈强, 陆圣陶, 等. 应用多尺度三维图搜索的SD- OCT图像层分割方法[J]. 计算机科学, 2015, 42(9): 272-277. doi: 10.11896/j.issn.1002-137X.2015.9.053.
    NIU Sijie, CHEN Qiang, LU Shengtao, et al. SD-OCT image layer segmentation using multi-scale 3-D graph search method[J]. Computer Science, 2015, 42(9): 272-277. doi: 10. 11896/j.issn.1002-137X.2015.9.053.
    MACIEJ W, TOMASZ B, PIOTR T, et al. Real-time in vivo imaging by high-speed spectral optical coherence tomography [J]. Optics Letters, 2003, 28(19): 1745-1747. doi: 10.1364/ OL.28.001745.
    YANG Q, REISMAN C A, WANG Z, et al. Automated layer segmentation of macular OCT images using dual-scale gradient information[J]. Optics Express, 2010, 18(20): 21293-21307. doi: 10.1364/oe.18.021293.
    VERMEER K A, VAN DER SCHOOT J, LEMIJ H G, et al. Automated segmentation by pixel classification of retinal layers in ophthalmic OCT images[J]. Biomedical Optics Express, 2011, 2(6): 1743-1756. doi: 10.1364/boe.2.001743.
    LANG A, CARASS A, HAUSER M, et al. Retinal layer segmentation of macular OCT images using boundary classification[J]. Biomedical Optics Express, 2013, 4(7): 1133-1152. doi: 10.1364/boe.4.001133.
    YAZDANPANAH A, HAMARNEH G, SMITH B R, et al. Segmentation of intra-retinal layers from optical coherence tomography images using an active contour approach[J]. IEEE Transactions on Medical Imaging, 2011, 30(2): 484-496. doi: 10.1109/tmi.2010.2087390.
    CHIU S J, LI X T, NICHOLAS P, et al. Automatic segmentation of seven retinal layers in SDOCT images congruent with expert manual segmentation[J]. Optics Express, 2010, 18(18): 19413-19428. doi:10.1364/oe.18. 019413.
    ABRAMOFF M D, GARVIN M K, and SONKA M. Retinal imaging and image analysis[J]. IEEE Reviews in Biomedical Engineering, 2010, 3: 169-208. doi: 10.1109/RBME.2010. 2084567.
    CHEN X, NIEMEIJER M, ZHANG L, et al. Three- dimensional segmentation of fluid-associated abnormalities in retinal OCT: Probability constrained graph-search-graph- cut[J]. IEEE Transactions on Medical Imaging, 2012, 31(8): 1521-1531. doi: 10.1109/tmi.2012.2191302.
    CHEN Q, DE SISTERNES L, LENG T, et al. Application of improved homogeneity similarity-based denoising in optical coherence tomography retinal images[J]. Journal of Digital Imaging, 2015, 28(3): 346-361. doi: 10.1007/s 10278-014-9742 -8.
    CHEN Q, FAN W, NIU S, et al. Automated choroid segmentation based on gradual intensity distance in HD-OCT images[J]. Optics Express, 2015, 23(7): 8974-8994. doi: 10. 1364/oe.23.008974.
    CHANG C C and LIN C J. LIBSVM: A library for support vector machines[J]. ACM Transactions on Intelligent Systems Technology, 2011, 2(3): 389-396. doi: 10.1145/1961189. 1961199.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1059) PDF downloads(250) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return