Advanced Search
Volume 39 Issue 5
May  2017
Turn off MathJax
Article Contents
YANG Zhenzhen, YANG Zhen, LI Lei, JIN Zhengmeng. A Total Variational Approach Based on Meridian Norm for Restoring Noisy Images with Alpha-stable Noise[J]. Journal of Electronics & Information Technology, 2017, 39(5): 1109-1115. doi: 10.11999/JEIT160657
Citation: YANG Zhenzhen, YANG Zhen, LI Lei, JIN Zhengmeng. A Total Variational Approach Based on Meridian Norm for Restoring Noisy Images with Alpha-stable Noise[J]. Journal of Electronics & Information Technology, 2017, 39(5): 1109-1115. doi: 10.11999/JEIT160657

A Total Variational Approach Based on Meridian Norm for Restoring Noisy Images with Alpha-stable Noise

doi: 10.11999/JEIT160657
Funds:

The National Natural Science Foundation of China (61501251, 61271335, 61271240), The Natural Science Foundation of Jiangsu Province (BK20140891), The Science Foundation of Nanjing University of Posts and Telecommunications (NY214191)

  • Received Date: 2016-06-21
  • Rev Recd Date: 2017-01-03
  • Publish Date: 2017-05-19
  • In actual applications, noises may inevitably exist, and thus to study the denoising method for images is great significant task in image processing filed that attracts much attention in recent years. In this paper, based on the statistical property of Meridian distributed and the Total Variational (TV), a total variational method is proposed for restoring images degraded by alpha-stable noise. Besides, in order to obtain a strictly convex model, a quadratic penalty term is added, which guarantees the uniqueness of the solution. For solving the novel convex variational model, a primal-dual algorithm is employed to solve the above model, and the convergence of the algorithm is proved. The experimental results demonstrate that the feasibility and effectiveness of the proposed model for the noisy images with alpha-stable noise.
  • loading
  • CHANG S G, YU B, and VETTERLI M. Adaptive wavelet thresholding for image denoising and compression[J]. IEEE Transactions on Image Processing, 2000, 9(9): 1532-1546. doi: 10.1109/83. 862633.
    RAFAEL C G and RICHARD E W. Digital Image Processing[M]. 2nd Edition, Upper Saddle River, USA, Prentice Hall, 2002: 220-275.
    NODES T and GALLAGHER N Jr. Median filter: Some modifications and their properties[J]. IEEE Transactions on Acoustics, Speech and Signal, Processing, 1982, 30(5): 739-746. doi: 10.1109/TASSP.1982.1163951.
    BARBU T, BARBU V, BIGA V, et al. A PDE variational approach to image denoising and restoration[J]. Nonlinear Analysis: Real World Applications, 2009, 10(3): 1351-1361.
    RUDIN L, OSHER S, and FATEMI E. Nonlinear total variation based noise removal algorithms[J]. Physica D: Nonlinear Phenomena, 1992, 60(1/4): 259-268. doi: 10.1016/ 0167-2789(92)90242-F.
    CHAMBOLLE A. An algorithm for total variation minimization and applications[J]. Journal of Mathematical Imaging and Vision, 2004, 20(1): 89-97. doi: 10.1023/B:JMIV. 0000011325.36760.1e.
    CHAN R, DONG Y, and HINTERMULLER M. An efficient two-phase L1-TV method for restoring blurred images with impulse noise[J]. IEEE Transactions on Image Processing, 2010, 19(7): 1731-1739. doi: 10.1109/TIP.2010.2045148.
    YANG J, ZHANG Y, and YIN W. An efficient TVL1 algorithm for deblurring multichannel images corrupted by impulsive noise[J]. SIAM Journal on Scientific Computing, 2009, 31(4): 2842-2865. doi: 10.1137/080732894.
    金正猛, 杨燕. 基于框式约束的快速全变差图像泊松去噪算法[J]. 电子与信息学报, 2014, 36(8): 1866-1871. doi: 10.3724 /SP.J.1146.2014.00154.
    JIN Zhengmeng and YANG Yan. A fast total variation algorithm based on box constraint for Possion noise removal [J]. Journal of Electronics Information Technology, 2014, 36(8): 1866-1871. doi: 10.3724/SP.J.1146.2014.00154.
    SCIACCHITANO F, DONG Y, and ZENG T. Variational approach for restoring blurred images with Cauchy noise[J]. SIAM Journal on Imaging Sciences, 2015, 8(3): 1894-1922. doi: 10.1137/140997816.
    AUBERT G and AUJOL J. A variational approach to removing multiplicative noise[J]. SIAM Journal on Applied Mathematics, 2008, 68(4): 925-946. doi: 10.1137/060671814.
    DONG Y and ZENG T. A convex variational model for restoring blurred images with multiplicative noise[J]. SIAM Journal on Imaging Sciences, 2013, 6(3): 1598-1625. doi: 10.1137/120870621.
    CHEN L and ZENG T. A convex variational model for restoring blurred images with large Rician noise[J]. Journal of Mathematical Imaging and Vision, 2015, 53(1): 92-111. doi: 10.1007/s10851-014-0551-y.
    NOLAN J. Stable Distributions-Models for Heavy Tailed Data[M]. Birkhauser Boston, 2015: 3-24.
    ZOZOR S, BROSSIER J, and AMBLARD P O. A parametric approach to suboptimal signal detection in alpha-stable noise[J]. IEEE Transactions on Signal Processing, 2006, 54(12): 4497-4509. doi: 10.1109/TSP.2006. 882066.
    SADREAZAMI H, AHMAD M O, and SWAMY M N S. Contourlet domain image denoising using the alpha-stable distribution[C]. IEEE 57th International Midwest Symposium on Circuits and Systems, College Station, Texas, USA, 2014: 141-144. doi: 10.1109/MWSCAS.2014.6908372.
    AYSAL T C and BARNER K E. Meridian filtering for robust signal processing[J]. IEEE Transactions on Signal Processing, 2007, 55(8): 3949-3962. doi: 10.1109/TSP.2007.894383.
    KORNPROBST P, DERICHE R, and AUBERT G. Image sequence analysis via partial differential equations[J]. Journal of Mathematical Imaging and Vision, 1999, 11(1): 5-26. doi: 10.1023/A:1008318126505.
    CHAMBOLLE A and POCK T. A first-order primal-dual algorithm for convex problems with applications to imaging [J]. Journal of Mathematical Imaging and Vision, 2011, 40(1): 120-145. doi: 10.1007/s10851-010-0251-1.
    WEI K, TAI X, CHAN T, et al. Primal-dual method for continuous max-flow approaches[C]. Proceedings of 5th Eccomas Thematic Conference on Computational Vision and Medical Image Processing, UK, 2016: 17-24. doi: 10.1201/ b19241-5.
    CARRILLO R E, BARNER K E, and AYSAL T C. Robust sampling and reconstruction methods for sparse signal in the presence of impulsive noise[J]. IEEE Journal of Selected Topics in Signal Processing, 2010, 4(2): 392-408. doi: 10.1109 /JSTSP.2009.2039177.
    ZHOU W, BOVIK A, SHEIKH H, et al. Image quality assessment: From error visibility to structural similarity[J]. IEEE Transactions on Image Processing, 2004, 13(4): 600-612. doi: 10.1109/TIP.2003.819861.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1485) PDF downloads(383) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return