Advanced Search
Volume 39 Issue 4
Apr.  2017
Turn off MathJax
Article Contents
ZHAO Hengkai, FU Xintao. Model and Analysis of Atmospheric Turbulence Index Structure Parameter in the Single-shaft Tunnel of Rail Transit Environment[J]. Journal of Electronics & Information Technology, 2017, 39(4): 887-892. doi: 10.11999/JEIT160632
Citation: ZHAO Hengkai, FU Xintao. Model and Analysis of Atmospheric Turbulence Index Structure Parameter in the Single-shaft Tunnel of Rail Transit Environment[J]. Journal of Electronics & Information Technology, 2017, 39(4): 887-892. doi: 10.11999/JEIT160632

Model and Analysis of Atmospheric Turbulence Index Structure Parameter in the Single-shaft Tunnel of Rail Transit Environment

doi: 10.11999/JEIT160632
Funds:

The National Natural Science Foundation of China (61271061, 61132003)

  • Received Date: 2016-06-15
  • Rev Recd Date: 2016-12-15
  • Publish Date: 2017-04-19
  • The change of the atmospheric turbulence affects the transmission of microwave. In order to study the impact of turbulence on the microwave transmission in rail transit tunnel environment, this paper combines the motion characteristics of the piston wind with the calculation method of atmospheric refractive index structure parameter. With investigation into the influences of tunnel environmental temperature, length of tunnel, blockage ratio, and piston wind speed on the atmospheric refractive index structure parameter, an atmospheric refractive index structure parameter model is established in the single-shaft rail transit tunnel environment. In this paper, the distribution of the atmospheric refractive index structure constant in rail transit tunnel environment is analyzed, and the change of atmospheric turbulence refractive index structure parameter in case of the train through the single-shaft tunnel with that of no single-shaft tunnel is compared based on the actual tunnel temperature scene. The model provides a theoretical reference for the study of radio refractive index structure constant in rail transit tunnel environment.
  • loading
  • 吴晓庆, 王英俭, 曾宗泳, 等. 一维大气边界层光学折射率结构常数的数值模式[J]. 强激光与粒子束, 2002, 14(6): 819-822.
    WU Xiaoqing, WANG Yingjian, ZENG Zongyong, et al. Numerical model of atmospheric optical refractive index structure parameter[J]. High Power Laser and Particle Beams, 2002, 14(6): 819-822.
    LI Yujie, ZHU Wenyue, and WU Xiaoqing. Equivalent refractive-index structure constant of non-Kolmogorov turbulence[J]. Optics Express, 2015, 23(18): 23004-23012. doi: 10.1364/OE.23.023004.
    NESSEL J A and MANNING R M. Derivation of microwave refractive index structure constant of the atmosphere from K-band interferometric phase measurements[J]. IEEE Transactions on Antennas and Propagation, 2014, 62(11): 5590-5598. doi: 10.1109/TAP.2014. 2347997.
    张永静, 赵东东. 基于FLUENT测轨道交通隧道中电波折射率结构常数[J]. 上海大学学报(自然科学版), 2014, 20(4): 458-465. doi: 10.3969/j.issn.1007-2861.2013.07.031.
    ZHANG Yongjing and ZHAO Dongdong. Structure parameter estimation of radio wave refractive index in rail transit tunnel based on FLUENT[J]. Journal of Shanghai University (Natural Science Edition), 2014, 20(4): 458-465. doi: 10.3969/j.issn.1007-2861.2013.07.031.
    YUAN R, LUO T, SUN J, et al. A new method for measuring the imaginary part of the atmospheric refractive index structure parameter in the urban surface layer[J]. Atmospheric Chemistry Physics, 2015, 15(5): 2521-2531. doi: 10.5194/acp-15-2521-2015.
    BAYKAL Y. Expressing oceanic turbulence parameters by atmospheric turbulence structure constant[J]. Applied Optics, 2016, 55(6): 1228-1231. doi: 10.1364/AO.55.001228.
    KUNKEL K E and WALTERS D L. Modeling the diurnal dependence of the optical refractive index structure parameter[J]. Journal of Geophysical Research Oceans, 1983, 88(C15): 10999-11004. doi: 10.1029/JC088iC15p 10999.
    宋从和. 波文比能量平衡法的应用及其误差分析[J]. 河北林果研究, 1993, 8(1): 85-96.
    SONG Conghe. The application of Bowen Ratio-energy balance method and erro analysis[J]. Hebei Journal of Forestry and Orchard Research, 1993, 8(1): 85-96.
    MANNING ROBERT M and VVHNALEK B. A microwave radiometric method to obtain the average path profile of atmospheric temperature and humidity structure parameters and its application to optical propagation system assessment [C]. Conference on Free-Space Laser Communication and Atmospheric Propagation XXVII, San Francisco, CA, USA, 2015: 539-545. doi: 10.1117/12.2080258.
    蔡俊, 吴晓庆, 李学彬, 等. 大气光学湍流估算模式及其相似性函数[J]. 强激光与粒子束, 2016, 28(7): 1-5. doi: 10.11884/HPLPB201527.071002.
    CAI Jun, WU Xiaoqing, LI Xuebin, et al. Estimation model of atmospheric optical turbulence and its similarity functions [J]. High Power Laser and Particle Beams, 2016, 28(7): 1-5. doi: 10.11884/HPLPB201527.071002.
    TUNICK A. CN2 model to calculate the micrometeorological influences on the refractive index structure parameter[J]. Environmental Modeling Software, 2003, 18(2): 165-171. doi: 10.1016/S1364-8152(02)00052-X.
    DYER A J. A review of flux-profile relationships[J]. Boundary-Layer Meteorol, 1974, 7(3): 363-372. doi: 10.1007/ BF00240838.
    HICKS B B. Wind profile relationships from the wangara experiment[J]. Quarterly Journal of the Royal Meteorological Society, 1976, 102(433): 535-551. doi: 10.1002/qj.4971024 3304.
    陈文英, 聂厚显. 有竖井隧道的列车活塞风计算公式的探讨[J]. 铁道标准设计通讯, 1981(4): 15-19. doi: 10.13238/j.issn. 1004-2954.1981.04.005.
    CHEN Wenying and NIE Houxian. Discussion on calculation formula of piston wind in a train with shaft tunnel[J]. Railway Standard Design, 1981(4): 15-19. doi: 10.13238/j.issn.1004- 2954.1981.04.005.
    曾臻, 匡亚迪, 龚蓂杰, 等. 地铁区间隧道空气温特性研究[C]. 2014铁路暖通年会论文集, 上海, 2015: 147-156.
    ZENG Zhen, KUANG Yadi, GONG Mingjie, et al. The analyzing of temperature distribution in the metro tummel [C]. Proceedings of the 2014th Railway HVAC Annual Conference, Shanghai, 2015: 147-156.
    胡汉华, 吴超, 李茂楠. 地下工程通风与空调[M]. 长沙: 中南大学出版社, 2005: 1-281.
    HU Hanhua, WU Chao, and LI Maonan. Underground Engineering Ventilation and Air Conditioning[M]. Changsha: Central South University Press, 2005: 1-281.
    朱祖熹. 上海地铁1号线盾构隧道衬砌防水技术述评[J]. 地下工程与隧道, 1993(4): 54-60. doi: 10.13547/j.cnki.dxgcysd. 1993.04.012.
    ZHU Zuxi. Review on waterproof technology of shield tunnel lining in Shanghai Metro Line 1[J]. Underground Engineering and Tunnels, 1993(4): 54-60. doi: 10.13547/j.cnki.dxgcysd. 1993.04.012.
    龚伟, 沈凯, 吴喜平. 地铁列车运行区间隧道热负荷分析[J]. 地下工程与隧道, 2011(3): 31-34. doi: 10.13547/j.cnki. dxgcysd.2011.03.003.
    GONG Wei, SHEN Kai, and WU Xiping. Analysis of heat load in subway running tunnel[J]. Underground Engineering and Tunnels, 2011(3): 31-34. doi: 10.13547/j.cnki.dxgcysd. 2011.03.003.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1292) PDF downloads(370) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return