Advanced Search
Volume 39 Issue 4
Apr.  2017
Turn off MathJax
Article Contents
ZHANG Gang, SONG Ying, ZHANG Tianqi. Characteristic Analysis of Exponential Type Monostable Stochastic Resonance under Levy Noise[J]. Journal of Electronics & Information Technology, 2017, 39(4): 893-900. doi: 10.11999/JEIT160579
Citation: ZHANG Gang, SONG Ying, ZHANG Tianqi. Characteristic Analysis of Exponential Type Monostable Stochastic Resonance under Levy Noise[J]. Journal of Electronics & Information Technology, 2017, 39(4): 893-900. doi: 10.11999/JEIT160579

Characteristic Analysis of Exponential Type Monostable Stochastic Resonance under Levy Noise

doi: 10.11999/JEIT160579
Funds:

The National Natural Science Foundation of China (61371164), The Chongqing Distinguished Youth Foundation (CSTC2011jjjq40002), The Research Project of Chongqing Educational Commission (KJ130524)

  • Received Date: 2016-06-03
  • Rev Recd Date: 2016-11-25
  • Publish Date: 2017-04-19
  • Based on the absolute and exponential monostable potential, a generalized exponential type single-well potential function is constructed. The laws for the resonant output of monostable system governed byl andb,D of Levy noise are explored under different characteristic index and symmetry parameter of Levy noise. The results show that the stochastic resonance phenomenon can be induced by adjusting the exponential type parametersl and b under any or of Levy noise. The larger b (or l) is, the wider parameter interval of l (or b) can induce SR (Stochastic Resonance). The ESR (Exponential SR) system can solve the problem that the traditional system can not achieve SR due to the improper selection of parameters. The interval of D of Levy noise, which induces good stochastic resonance, does not change with or. At last, the proposed exponential type monostable is applicated to detect bearing fault signals, which achieves better performance compared with the traditional bisabled system.
  • loading
  • EINSTEIN A. ?ber die von der molekularkinetischen theorie der w?rme geforderte bewegung von in ruhenden flssigkeiten suspendierten teilchen[J]. Annalen der Physik, 1905, 17(8): 549-560.
    BENZI R, SUTERA A, and VULPIANI A. The mechanism of stochastic resonance[J]. Journal of Physics A, 1981, 14(11) 453-457. doi: 10.1088/0305-4470/14/11/006.
    梁军利, 杨树元, 唐志峰. 基于随机共振的微弱信号检测[J].电子与信息学报, 2006, 28(6): 1068-1072.
    LIANG Junli, YANG Shuyuan, and TANG Zhifeng. Weak signal detection based on stochastic resonance[J]. Journal of Electronics Information Technology, 2006, 28(6): 1068-1072.
    WANG Zhanqing, XU Y, and YANG H. Levy noise induced stochastic resonance in an FHN model[J]. Science China Technological Sciences, 2016, 59(3): 371-375. doi: 10.1007/ s11431-015-6001-2.
    GITTERMAN M. Classical harmonic oscillator with multiplicative noise[J]. Physica A Statistical Mechanics Its Applications, 2005, 352(s 2/4): 309-334. doi: 10.1016/j.physa. 2005.01.008.
    郑俊, 林敏. 基于双共振的微弱信号检测方法与试验研究[J]. 机械工程学报, 2014, 50(12): 11-16. doi: 10.3901/JME.2014. 12.011.
    ZHENG Jun and LIN Min. Experimental research of weak signal detection method based on the dual-resonance[J]. Journal of Mechanical Engineering 2014, 50(12): 11-16. doi: 10.3901/JME.2014.12.011.
    陆思良. 基于随机共振的微弱信号检测模型及应用研究[D]. [博士论文], 中国科学技术大学, 2015.
    LU Siliang. Models and applications of stochastic resonance based weak signal detection[D]. [Ph.D. dissertation], University of Science and Technology of China, 2015.
    田祥友, 冷永刚, 范胜波. 一阶线性系统的调参随机共振研究[J]. 物理学报, 2013, 62(2): 95-102. doi: 10.7498/aps.62.020505.
    TIAN Xiangyou, LENG Yonggang, and FAN Shengbo. Parameter-adjusted stochastic resonance of first-order linear system[J]. Acta Physica Sinica, 2013 62(2): 95-102. doi: 10.7498/aps.62.020505.
    袁季冬, 张路, 罗懋康. 幂函数型单势阱随机振动系统的广义随机共振[J]. 物理学报, 2014, 63(16): 242-252. doi: 10.7498/ aps.63.164302.
    YUAN Jidong, ZHANG Lu, and LUO Maokang. Generalized stochastic resonance of power function type single-well system[J]. Acta Physica Sinica, 2014, 63(16): 242-252. doi: 10.7498/aps.63.164302.
    赖志慧, 冷永刚. 三稳系统的动态响应及随机共振[J]. 物理学报, 2015, 64(20): 77-88. doi: 10.7498/aps.64.200503.
    LAI Zhihui and LENG Yonggang. Dynamic response and stochastic resonance of a tri-stable system[J]. Acta Physica Sinica, 2015, 64(20): 77-88. doi: 10.7498/aps.64.200503.
    GILBARG D and TRUDINGER N S. Elliptic Partial Differential Equations of Second Order[M]. Berlin Heidelberg, Springer-Verlag. 1977: 469-484.
    CHAMBERS J M. Display and analysis of spatial data: NATO advanced study institute[J]. Journal of the American Statistical Association, 1976, 71(355): 768-769. doi: 10.2307 /2285621.
    WERON R. On the Chambers-Mallows-Stuck method for simulating skewed stable random variables[J] Statistics Probability Letters, 1996, 28(2): 165-171. doi: 10.1016/0167- 7152(95)00113-1.
    张刚, 胡韬, 张天骐. Levy噪声激励下的幂函数型单稳随机共振特性分析[J]. 物理学报, 2015, 64(22): 72-81. doi: 10.7498/ aps.64.220502.
    ZHANG Gang, HU Tao, and ZHANG Tianqi. Characteristic analysis of power function type monostable stochastic resonance with Levy noise[J]. Acta Physica Sinica, 2015, 64(22): 72-81. doi: 10.7498/aps.64.220502.
    ZHANG Haibin, HE Qingbo, and KONG Fanrang. Stochastic resonance in an underdamped system with pinning potential for weak signal detection[J]. Sensors, 2015, 15(9): 21169-21195. doi: 10.3390/s150921169.
    QIAO Zijian and PAN Zhengrong. SVD principle analysis and fault diagnosis for bearings based on the correlation coefficient[J]. Measurement Science Technology, 2015, 26(8): 15-30. doi: 10.1088/0957-0233/26/8/085014.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1210) PDF downloads(376) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return