Citation: | ZHANG Gang, SONG Ying, ZHANG Tianqi. Characteristic Analysis of Exponential Type Monostable Stochastic Resonance under Levy Noise[J]. Journal of Electronics & Information Technology, 2017, 39(4): 893-900. doi: 10.11999/JEIT160579 |
EINSTEIN A. ?ber die von der molekularkinetischen theorie der w?rme geforderte bewegung von in ruhenden flssigkeiten suspendierten teilchen[J]. Annalen der Physik, 1905, 17(8): 549-560.
|
BENZI R, SUTERA A, and VULPIANI A. The mechanism of stochastic resonance[J]. Journal of Physics A, 1981, 14(11) 453-457. doi: 10.1088/0305-4470/14/11/006.
|
梁军利, 杨树元, 唐志峰. 基于随机共振的微弱信号检测[J].电子与信息学报, 2006, 28(6): 1068-1072.
|
LIANG Junli, YANG Shuyuan, and TANG Zhifeng. Weak signal detection based on stochastic resonance[J]. Journal of Electronics Information Technology, 2006, 28(6): 1068-1072.
|
WANG Zhanqing, XU Y, and YANG H. Levy noise induced stochastic resonance in an FHN model[J]. Science China Technological Sciences, 2016, 59(3): 371-375. doi: 10.1007/ s11431-015-6001-2.
|
GITTERMAN M. Classical harmonic oscillator with multiplicative noise[J]. Physica A Statistical Mechanics Its Applications, 2005, 352(s 2/4): 309-334. doi: 10.1016/j.physa. 2005.01.008.
|
郑俊, 林敏. 基于双共振的微弱信号检测方法与试验研究[J]. 机械工程学报, 2014, 50(12): 11-16. doi: 10.3901/JME.2014. 12.011.
|
ZHENG Jun and LIN Min. Experimental research of weak signal detection method based on the dual-resonance[J]. Journal of Mechanical Engineering 2014, 50(12): 11-16. doi: 10.3901/JME.2014.12.011.
|
陆思良. 基于随机共振的微弱信号检测模型及应用研究[D]. [博士论文], 中国科学技术大学, 2015.
|
LU Siliang. Models and applications of stochastic resonance based weak signal detection[D]. [Ph.D. dissertation], University of Science and Technology of China, 2015.
|
田祥友, 冷永刚, 范胜波. 一阶线性系统的调参随机共振研究[J]. 物理学报, 2013, 62(2): 95-102. doi: 10.7498/aps.62.020505.
|
TIAN Xiangyou, LENG Yonggang, and FAN Shengbo. Parameter-adjusted stochastic resonance of first-order linear system[J]. Acta Physica Sinica, 2013 62(2): 95-102. doi: 10.7498/aps.62.020505.
|
袁季冬, 张路, 罗懋康. 幂函数型单势阱随机振动系统的广义随机共振[J]. 物理学报, 2014, 63(16): 242-252. doi: 10.7498/ aps.63.164302.
|
YUAN Jidong, ZHANG Lu, and LUO Maokang. Generalized stochastic resonance of power function type single-well system[J]. Acta Physica Sinica, 2014, 63(16): 242-252. doi: 10.7498/aps.63.164302.
|
赖志慧, 冷永刚. 三稳系统的动态响应及随机共振[J]. 物理学报, 2015, 64(20): 77-88. doi: 10.7498/aps.64.200503.
|
LAI Zhihui and LENG Yonggang. Dynamic response and stochastic resonance of a tri-stable system[J]. Acta Physica Sinica, 2015, 64(20): 77-88. doi: 10.7498/aps.64.200503.
|
GILBARG D and TRUDINGER N S. Elliptic Partial Differential Equations of Second Order[M]. Berlin Heidelberg, Springer-Verlag. 1977: 469-484.
|
CHAMBERS J M. Display and analysis of spatial data: NATO advanced study institute[J]. Journal of the American Statistical Association, 1976, 71(355): 768-769. doi: 10.2307 /2285621.
|
WERON R. On the Chambers-Mallows-Stuck method for simulating skewed stable random variables[J] Statistics Probability Letters, 1996, 28(2): 165-171. doi: 10.1016/0167- 7152(95)00113-1.
|
张刚, 胡韬, 张天骐. Levy噪声激励下的幂函数型单稳随机共振特性分析[J]. 物理学报, 2015, 64(22): 72-81. doi: 10.7498/ aps.64.220502.
|
ZHANG Gang, HU Tao, and ZHANG Tianqi. Characteristic analysis of power function type monostable stochastic resonance with Levy noise[J]. Acta Physica Sinica, 2015, 64(22): 72-81. doi: 10.7498/aps.64.220502.
|
ZHANG Haibin, HE Qingbo, and KONG Fanrang. Stochastic resonance in an underdamped system with pinning potential for weak signal detection[J]. Sensors, 2015, 15(9): 21169-21195. doi: 10.3390/s150921169.
|
QIAO Zijian and PAN Zhengrong. SVD principle analysis and fault diagnosis for bearings based on the correlation coefficient[J]. Measurement Science Technology, 2015, 26(8): 15-30. doi: 10.1088/0957-0233/26/8/085014.
|