Citation: | LIU Yu, WU Bin, ZENG Xuelin, ZHANG Yunlei, WANG Bai. A Group Recommendation Framework Based on Social Network Community[J]. Journal of Electronics & Information Technology, 2016, 38(9): 2150-2157. doi: 10.11999/JEIT160544 |
MASTHOFF J. Recommender Systems Handbook[M]. Boston, MA: Springer US, ch. Group Recommender Systems: Combining Individual Models, 2011: 677-702.
|
JAMESON A and SMYTH B. The Adaptive Web: Methods and Strategies of Web Personalization[M]. Berlin, Heidelberg: Springer Berlin Heidelberg, ch. Recommendation to Groups, 2007: 596-627.
|
AMER-YAHIA S, ROY S, CHAWLAT A, et al. Group recommendation: Semantics and efficiency[J]. Proceedings of the VLDB Endowment, 2009, 2(1): 754-765. doi: 10.14778/ 1687627.1687713.
|
OCONNOR M, COSLEY D, KONSTAN J, et al. ECSCW 2001: Proceedings of the Seventh European Conference on Computer Supported Cooperative Work 1620 September 2001[M]. Bonn, Germany. Dordrecht: Springer Netherlands, ch. PolyLens: A Recommender System for Groups of Users, 2001: 199-218.
|
DE CAMPOS L M, FERNANDEZ-LUNA J M, HUETE J F, et al. Group recommending: a methodological approach based on bayesian networks[C]. IEEE 23rd International Conference on Data Engineering Workshop, Istanbul, Turkey, 2007: 835-844.
|
OHARA K, LIPSON M, JANSEN M, et al. Jukola: democratic music choice in a public space[C]. Proceedings of the 5th Conference on Designing Interactive Systems: Processes, Practices, Methods, and Techniques, New York, USA, 2004: 145-154.
|
SPRAGUE D, WU F, and TORY M. Music selection using the partyvote democratic jukebox[C]. Proceedings of the Working Conference on Advanced Visual Interfaces, New York, USA, 2008: 433-436.
|
CHAO D L, BALTHROP J, and FORREST S. Adaptive radio: achieving consensus using negative preferences[C]. Proceedings of the 2005 International ACM SIGGROUP Conference on Supporting Group Work, New York, USA, 2005: 120-123.
|
MCCARTHY J F and ANAGNOST T D. Musicfx: An arbiter of group preferences for computer supported collaborative workouts[C]. Proceedings of the 1998 ACM Conference on Computer Supported Cooperative Work, New York, USA, 1998: 363-372.
|
SHI J, WU B, and LIN X. A latent group model for group recommendation[C]. 2015 IEEE International Conference on Mobile Services, New York, USA, 2015: 233-238.
|
BALTRUNAS L, MAKCINSKAS T, and RICCI F. Group recommendations with rank aggregation and collaborative filtering[C]. Proceedings of the Fourth ACM Conference on Recommender Systems, New York, USA, 2010: 119-126.
|
PAZZANI M J and BILLSUS D. The Adaptive Web: Methods and Strategies of Web Personalization[M]. Berlin, Heidelberg: Springer Berlin Heidelberg, ch. Content-Based Recommendation Systems, 2007: 325-341.
|
SHI Y, LARSON M, and HANJALIC A. Collaborative filtering beyond the user-item matrix: a survey of the state of the art and future challenges[J]. ACM Computing Surveys, 2014, 47(1): 1-45. doi: 10.1145/2556270.
|
王玉斌, 孟祥武, 胡勋. 一种基于信息老化的协同过滤推荐算法[J]. 电子与信息学报, 2013, 35(10): 2391-2396. doi: 10.3724 /SP.J.1146.2012.01743.
|
WANG Y, MENG X, and HU X. Information aging-based collaborative filtering recommendation algorithm[J]. Journal of Electronics Information Technology, 2013, 35(10): 2391-2396. doi: 10.3724/SP.J.1146.2012.01743.
|
邢星. 社交网络个性化推荐方法研究[D]. [博士论文], 大连海事大学, 2013.
|
XING X. Research on recommendation methods in social networks[D]. [Ph.D. dissertation], Dalian Maritime University, 2013.
|
涂丹丹, 舒承椿, 余海燕. 基于联合概率矩阵分解的上下文广告推荐算法[J]. 软件学报, 2013, 24(3): 454-464. doi: 10.3724/ SP.J.1001.2013.04238.
|
TU D, SHU C, and YU H. Using unified probabilistic matrix factorization for contextual advertisement recommendation [J]. Journal of Software, 2013, 24(3): 454-464. doi: 10.3724/ SP.J.1001.2013.04238.
|
GIRVAN M and NEWMAN M E. Community structure in social and biological networks[J]. Proceedings of the National Academy of Sciences, 2002, 99(12): 7821-7826. doi: 10.1073/ pnas.122653799.
|
BORATTO L and CARTA S. Using collaborative filtering to overcome the curse of dimensionality when clustering users in a group recommender system[C]. Proceedings of 16th International Conference on Enterprise Information Systems, Lisbon, Portugal, 2014: 564-572.
|
方耀宁, 郭云飞, 丁雪涛, 等. 一种基于局部结构的改进奇异值分解推荐算法[J]. 电子与信息学报, 2013, 35(6): 1284-1289. doi: 10.3724/SP.J.1146.2012.01299.
|
FANG Y, GUO Y, DING X, et al. An improved singular value decomposition recommender algorithm based on local structures[J]. Journal of Electronics Information Technology, 2013, 35(6): 1284-1289. doi: 10.3724/SP.J.1146. 2012.01299.
|
DING C, LI T, and PENG W, et al. Orthogonal nonnegative matrix t-factorizations for clustering[C]. Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, New York, NY, USA, 2006: 126-135.
|
CANTADOR I, and CASTELLS P. Extracting multilayered communities of interest from semantic user profiles: application to group modeling and hybrid recommendations [J]. Computers in Human Behavior, 2011, 27(4): 1321-1336. doi: 10.1016/j.chb.2010.07.027.
|
SHI X, LU H, HE Y, et al. Community detection in social network with pairwisely constrained symmetric non-negative matrix factorization[C]. Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, Paris, France, 2015: 541-546.
|
PSORAKIS I, ROBERTS S, EDBEN M, et al. Overlapping community detection using Bayesian non-negative matrix factorization[J]. Physical Review E, 2011, 83(6): 066114. doi: 10.1103/PhysRevE.83.066114.
|