Citation: | ZHANG Ge, ZHANG Pengyuan, PAN Jielin, YAN Yonghong. Fast Decoding Algorithm for Automatic Speech Recognition Based on Recurrent Neural Networks[J]. Journal of Electronics & Information Technology, 2017, 39(4): 930-937. doi: 10.11999/JEIT160543 |
GRAVES Alex, JAITLY Navdeep, and MOHAMED Abdel-rahman. Hybrid speech recognition with deep bidirectional LSTM[C]. 2013 IEEE Workshop on Automatic Speech Recognition and Understanding (ASRU), Olomouc, Czech Republic, 2013: 273-278.
|
SAK Hasim, SENIOR Andrew, and BEAUFAYS Franoise. Long short-term memory recurrent neural network architectures for large scale acoustic modeling[C]. 15th Annual Conference of the International Speech Communication Association (Interspeech 2014), Singapore, 2014: 338-342.
|
NARAYANAN Arun, MISRA Ananya, and CHIN Kean. Large-scale, sequence-discriminative, joint adaptive training for masking-based robust ASR[C]. 16th Annual Conference of the International Speech Communication Association (Interspeech 2015), Dresden, Germany, 2015: 3571-3575.
|
LI Jinyu, MOHAMED Abdelrahman, ZWEIG Geoffrey, et al. Exploring multidimensional LSTMs for large vocabulary ASR[C]. 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Shanghai, China, 2016: 4940-4944.
|
PEDDINTI Vijayaditya, POVEY Daniel, and KHUDANPUR Sanjeev. A time delay neural network architecture for efficient modeling of long temporal contexts[C]. 16th Annual Conference of the International Speech Communication Association (Interspeech 2015), Dresden, Germany, 2015: 3214-3218.
|
SNYDER David, GARCIA-ROMERO Daniel, and POVEY Daniel. Time delay deep neural network-based universal background models for speaker recognition[C]. 2015 IEEE Workshop on Automatic Speech Recognition and Understanding (ASRU), Scottsdale, USA, 2015: 92-97.
|
PEDDINTI Vijayaditya, CHEN Guoguo, MANOHAR Vimal, et al. JHU ASpIRE system: robust LVCSR with TDNNs, i-vector adaptation, and RNN-LMs[C]. 2015 IEEE Workshop on Automatic Speech Recognition and Understanding (ASRU), Scottsdale, USA, 2015: 539-546.
|
SEIDE Frank, LI Gang, and YU Dong. Conversational speech transcription using context-dependent deep neural networks[C]. 12th Annual Conference of the International Speech Communication Association (Interspeech 2011), Florence, Italy, 2011: 437-440.
|
SELTZER Michael L, YU Dong, and WANG Yongqiang. An investigation of deep neural networks for noise robust speech recognition[C]. 2013 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Vancouver, Canada, 2013: 7398-7402.
|
VANHOUCKE Vincent, DEVIN Matthieu, and HEIGOLD Georg. Multiframe deep neural networks for acoustic modeling[C]. 2013 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Vancouver, Canada, 2013: 7582-7585.
|
MOORE Darren, DINES John, DOSS Mathew Magimai, et al. Juicer: A Weighted Finite-State Transducer Speech Decoder[M]. Berlin, Heidelberg, Springer, 2006: 285-296.
|
YOUNG S J, RUSSELL N H, and THORNTON J H S. Token passing: A simple conceptual model for connected speech recognition systems[R]. CUED/F-INFENG/TR38, Engineering Department, Cambridge University, 1989.
|
NOLDEN David, SCHLTER Ralf, and NEY Hermann. Extended search space pruning in LVCSR[C]. 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Kyoto, Japan, 2012: 4429-4432.
|
郭宇弘. 基于加权有限状态转换机的语音识别系统研究[D]. [博士论文], 中国科学院大学, 2013: 1-20.
|
GUO Yuhong. Automatic speech recognition system based on weighted finite-state transducers[D]. [Ph.D. dissertation], University of Chinese Academy of Sciences, 2013: 1-20.
|
RABINER Lawrence R and JUANG Biinghwang. An introduction to hidden Markov models[J]. IEEE ASSP Magazine, 1986, 3(1): 4-16. doi: 10.1109/MASSP.1986. 1165342
|
YOUNG Steve, EVERMANN Gunnar, GALES Mark, et al. The HTK Book Vol. 2[M]. Cambridge, Entropic Cambridge Research Laboratory, 1997: 59-210.
|
ZHANG Qingqing, SOONG Frank, QIAN Yao, et, al. Improved modeling for F0 generation and V/U decision in HMM-based TTS[C]. 2010 IEEE International Conference on Acoustics Speech and Signal Processing (ICASSP), Dallas, USA, 2010: 4606-4609.
|