Citation: | LIU Yezheng, LI Lingfei, JIANG Yuanchun. Review of Social Marketing Performance Maximization Problem and Its Extension[J]. Journal of Electronics & Information Technology, 2016, 38(9): 2130-2140. doi: 10.11999/JEIT160517 |
DENRELL J. SOCIOLOGY: Indirect social influence[J]. Science, 2008, 321(5885): 47-48. doi: 10.1126/science. 1157667.
|
MUCHNIK L, ARAL S, and TAYLOR S J. Social influence bias: A randomized experiment[J]. Science, 2013, 341(6146): 647-651. doi: 10.1126/science.1240466.
|
SUN Tao, CHEN Wei, LIU Zhenming, et al. Participation maximization based on social influence in online discussion forums[C]. The 5th International AAAI Conference on Web and Social Media (ICWSM), Barcelona, 2011: 361-368.
|
BANERJEE A, CHANDRASEKHAR A G, DUFLO E, et al. The diffusion of microfinance[J]. Science, 2013, 341(6144): 1236498. doi: 10.1126/science.1236498.
|
BOND R M, FARISS C J, JONES J J, et al. A 61-million-person experiment in social influence and political mobilization[J]. Nature, 2012, 489(7415): 295-298. doi: 10.1038/nature11421.
|
ARAL S. Social science: poked to vote[J]. Nature, 2012, 489(7415): 212-214. doi: 10.1038/489212a.
|
ARAL S and WALKER D. Tie strength, embeddedness, and social influence: A large-scale networked experiment[J]. Management Science, 2014, 60(6): 1352-1370. doi: 10.1287/ mnsc.2014.1936.
|
LEE Youngjin, HOSANAGAR K, and TAN Y. Do I follow my friends or the crowd? information cascades in online movie ratings[J]. Management Science, 2015, 61(9): 2241-2258. doi: 10.1287/mnsc.2014.2082.
|
LEWIS K, GONZALEZ M, and KAUFMAN J. Social selection and peer influence in an online social network[J]. Proceedings of the National Academy of Sciences, 2012, 109(1): 68-72. doi: 10.1073/pnas.1109739109.
|
MORONE F and MAKSE H A. Influence maximization in complex networks through optimal percolation[J]. Nature, 2015, 524(7563): 65-68. doi: 10.1038/nature14604.
|
MOE W W and SCHWEIDEL D A. Online product opinions: incidence, evaluation, and evolution[J]. Marketing Science, 2012, 31(3): 372-386. doi: 10.1287/mksc.1110.0662.
|
TUCKER C E. The reach and persuasiveness of viral video ads[J]. Marketing Science, 2014, 34(2): 281-296. doi: 10.1287/ mksc.2014.0874.
|
GODINHO DE MATOS M, FERREIRA P, and KRACKHARDT D. Peer influence in the diffusion of the iPhone 3G over a large social network[J]. Management Information Systems Quarterly (Forthcoming), 2014, 38(4): 1103-1133. doi: 10.2139/ssrn.2053420.
|
GU Bin, KONANA P, RAGHUNATHAN R, et al. Research note-the allure of homophily in social media: Evidence from investor responses on virtual communities[J]. Information Systems Research, 2014, 25(3): 604-617. doi: 10.1287/isre. 2014.0531.
|
KEMPE D, KLEINBERG J, and TARDOS. Maximizing the spread of influence through a social network[C]. Proceedings of the ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, New York, 2003: 137-146. doi: 10.1145/956750.956769.
|
DOMINGOS P and RICHARDSON M. Mining the network value of customers[C]. Proceedings of the Seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, New York, 2001: 57-66. doi: 10.1145/ 502512.502525.
|
RICHARDSON M and DOMINGOS P. Mining knowledge- sharing sites for viral marketing[C]. Proceedings of the Eighth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, New York, 2002: 61-70. doi: 10.1145/775047.775057.
|
CHEN Wei, WANG Yajun, and YANG Siyu. Efficient influence maximization in social networks[C]. Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, New York, 2009: 199-208. doi: 10.1145/1557019.1557047.
|
WATTS D J. A simple model of global cascades on random networks[J]. Proceedings of the National Academy of Sciences, 2002, 99(9): 5766-5771. doi: 10.1073/pnas.082090499.
|
MYERS S A, ZHU Chenguang, and LESKOVEC J. Information diffusion and external influence in networks[C]. Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, New York, 2012: 33-41. doi: 10.1145/2339530.2339540.
|
NEWMAN M E J. The structure and function of complex networks[J]. SIAM Review, 2003, 45(2): 167-256. doi : 10.1137/S003614450342480.
|
YANG J and LESKOVEC J. Modeling information diffusion in implicit networks[C]. 2010 IEEE International Conference on Data Mining, Sydney, 2010: 599-608. doi: 10.1109/ ICDM.2010.22.
|
GOLDENBERG J, LIBAI B, and MULLER E. Talk of the network: A complex systems look at the underlying process of word-of-mouth[J]. Marketing Letters, 2001, 12(3): 211-223. doi: 10.1023/A:1011122126881.
|
GOLDENBERG J, LIBAI B, and MULLER E. Using complex systems analysis to advance marketing theory development: Modeling heterogeneity effects on new product growth through stochastic cellular automata[J]. Academy of Marketing Science Review, 2001, 9(3): 1-18.
|
KEMPE D, KLEINBERG J, and TARDOS. Influential Nodes in a Diffusion Model for Social Networks[M]. Lisbon: Springer, 2005: 1127-1138.
|
KIMURA M, SAITO K, NAKANO R, et al. Extracting influential nodes on a social network for information diffusion[J]. Data Mining and Knowledge Discovery, 2010, 20(1): 70-97. doi: 10.1007/s10618-009-0150-5.
|
KIMURA M and SAITO K. Tractable Models for Information Diffusion in Social Networks[M]. Berlin: Springer, 2006: 259-271.
|
EVEN-DAR E and SHAPIRA A. A Note on Maximizing the Spread of Influence in Social Networks[M]. San Diego: Springer, 2007: 281-286.
|
MA Hao, YANG Haixuan, LYU M R, et al. Mining social networks using heat diffusion processes for marketing candidates selection[C]. Proceedings of the 17th ACM Conference on Information and Knowledge Management, New York, 2008: 233-242. doi: 10.1145/1458082.1458115.
|
CENTOLA D. The spread of behavior in an online social network experiment[J]. Science, 2010, 329(5996): 1194-1197. doi: 10.1126/science.1189910.
|
ARAL S, MUCHNIK L, and SUNDARARAJAN A. Distinguishing influence-based contagion from homophily- driven diffusion in dynamic networks[J]. Proceedings of the National Academy of Sciences, 2009, 106(51): 21544-21549. doi: 10.1073/pnas.0908800106.
|
ARAL S and WALKER D. Identifying influential and susceptible members of social networks[J]. Science, 2012, 337(6092): 337-341. doi: 10.1126/science.1215842.
|
CHEN Wei, WANG Chi, and WANG Yajun. Scalable influence maximization for prevalent viral marketing in large-scale social networks[C]. Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, New York, 2010: 1029-1038. doi: 10.1145/ 1835804.1835934.
|
CHEN Wei, YUAN Yifei, and ZHANG Li. Scalable influence maximization in social networks under the linear threshold model[C]. 2010 IEEE 10th International Conference on Data Mining (ICDM), Sydney, 2010: 88-97. doi: 10.1109/ICDM. 2010.118.
|
NEMHAUSER G L, WOLSEY L A, and FISHER M L. An analysis of approximations for maximizing submodular set functionsI[J]. Mathematical Programming, 1978, 14(1): 265-294. doi: 10.1007/BF01588971.
|
LESKOVEC J, KRAUSE A, GUESTRIN C, et al. Cost- effective outbreak detection in networks[C]. Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, New York, 2007: 420-429. doi: 10.1145/1281192.1281239.
|
GOYAL A, LU Wei, and LAKSHMANAN L V S. Celf++: Optimizing the greedy algorithm for influence maximization in social networks[C]. Proceedings of the 20th International Conference Companion on World Wide Web, New York, 2011: 47-48. doi: 10.1145/1963192.1963217.
|
GIRVAN M and NEWMAN M E J. Community structure in social and biological networks[J]. Proceedings of the National Academy of Sciences, 2002, 99(12): 7821-7826. doi: 10.1073/ pnas.122653799.
|
WANG Yu, CONG Gao, SONG Guojie, et al. Community- based greedy algorithm for mining top-k influential nodes in mobile social networks[C]. Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, New York, 2010: 1039-1048. doi: 10.1145/ 1835804.1835935.
|
SONG Guojie, ZHOU Xiabing, WANG Yu, et al. Influence maximization on large-scale mobile social network: A divide-and-conquer method[J]. IEEE Transactions on Parallel and Distributed Systems, 2015, 26(5): 1379-1392. doi: 10.1109/TPDS.2014.2320515.
|
BORGS C, BRAUTBAR M, CHAYES J, et al. Maximizing social influence in nearly optimal time[C]. Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms, Philadelphia, 2014: 946-957. doi: 10.1137/ 1.9781611973402.70.
|
TANG Youze, XIAO Xiaokui, and SHI Yanchen. Influence maximization: Near-optimal time complexity meets practical efficiency[C]. Proceedings of the 2014 ACM SIGMOD International Conference on Management of Data, New York, 2014: 75-86. doi: 10.1145/2588555.2593670.
|
COHEN E, DELLING D, PAJOR T, et al. Sketch-based influence maximization and computation: Scaling up with guarantees[C]. Proceedings of the 23rd ACM International Conference on Information and Knowledge Management, New York, 2014: 629-638. doi: 10.1145/2661829.2662077.
|
WANG Chi, CHEN Wei, and WANG Yajun. Scalable influence maximization for independent cascade model in large-scale social networks[J]. Data Mining and Knowledge Discovery, 2012, 25(3): 545-576. doi: 10.1007/s10618-012- 0262-1.
|
GOYAL A, LU W, and LAKSHMANAN L V S. Simpath: An efficient algorithm for influence maximization under the linear threshold model[C]. 2011 IEEE 11th International Conference on Data Mining (ICDM), Vancouver, 2011: 211-220. doi: 10.1109/ICDM.2011.132.
|
JUNG K, HEO W, and CHEN Wei. IRIE: Scalable and robust influence maximization in social networks[C]. 2012 IEEE 12th International Conference on Data Mining, Brussels, 2012: 918-923. doi: 10.1109/ICDM.2012.79.
|
KITSAK M, GALLOS L K, HAVLIN S, et al. Identification of influential spreaders in complex networks[J]. Nature Physics, 2010, 6(11): 888-893. doi: 10.1038/nphys1746.
|
NARAYANAM R and NARAHARI Y. A shapley value-based approach to discover influential nodes in social networks[J]. IEEE Transactions on Automation Science and Engineering, 2011, 8(1): 130-147. doi: 10.1109/TASE.2010.2052042.
|
JIANG Qingye, SONG Guojie, GAO Cong, et al. Simulated annealing based influence maximization in social networks[C]. Twenty-fifth AAAI Conference on Artificial Intelligence, San Francisco, USA, 2011, 11: 127-132.
|
LIU Xiaodong, LI Mo, LI Shanshan, et al. IMGPU: GPU- accelerated influence maximization in large-scale social networks[J]. IEEE Transactions on Parallel and Distributed Systems, 2014, 25(1): 136-145. doi: 10.1109/TPDS.2013.41.
|
HE Xinran and KEMPE D. Stability of influence maximization[C]. Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, New York, 2014: 1256-1265. doi: 10.1145/2623330. 2623746.
|
ADIGA A, KUHLMAN C J, MORTVEIT H S, et al. Sensitivity of diffusion dynamics to network uncertainty[J]. Journal of Artificial Intelligence Research, 2014, 51: 207-226. doi: 10.1613/jair.4330.
|
SAITO K, NAKANO R, and KIMURA M. Prediction of information diffusion probabilities for independent cascade model[C]. Knowledge-Based Intelligent Information and Engineering Systems, Zagreb, 2008: 67-75. doi: 10.1007/978- 3-540-85567-5_9.
|
GOYAL A, BONCHI F, and LAKSHMANAN L V S. Learning influence probabilities in social networks[C]. Proceedings of the Third ACM International Conference on Web Search and Data Mining, New York, 2010: 241-250. doi: 10.1145/1718487.1718518.
|
GOYAL A, BONCHI F, and LAKSHMANAN L V S. A data-based approach to social influence maximization[J]. Proceedings of the VLDB Endowment, 2011, 5(1): 73-84. doi: 10.14778/2047485.2047492.
|
GRANOVETTER M S. The strength of weak ties[J]. American Journal of Sociology, 1973, 78(6): 1360-1380.
|
KRACKHARDT D. The strength of strong ties: The importance of philos in organizations[J]. Networks and Organizations: Structure, Form, and Action, 1992, 216-239.
|
LIN C X, MEI Qiaozhu, HAN Jiawei, et al. The joint inference of topic diffusion and evolution in social communities[C]. 2011 IEEE 11th International Conference on Data Mining (ICDM), Vancouver, 2011: 378-387. doi: 10. 1109/ICDM.2011.144.
|
LIU Lu, TANG Jie, HAN Jiawei, et al. Mining topic-level influence in heterogeneous networks[C]. Proceedings of the 19th ACM International Conference on Information and Knowledge Management, New York, 2010: 199-208. doi: 10.1145/1871437.1871467.
|
TANG Jie, SUN Jimeng, WANG Chi, et al. Social influence analysis in large-scale networks[C]. Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, New York, 2009: 807-816. doi: 10.1145/1557019.1557108.
|
LI Yungming and SHIU Yalin. A diffusion mechanism for social advertising over microblogs[J]. Decision Support Systems, 2012, 54(1): 9-22. doi: 10.1016/j.dss.2012.02.012.
|
BARBIERI N, BONCHI F, and MANCO G. Topic-aware social influence propagation models[J]. Knowledge and Information Systems, 2013, 37(3): 555-584. doi: 10.1007/ s10115-013-0646-6.
|
ASLAY C, BARBIERI N, BONCHI F, et al. Online topic- aware influence maximization queries[C]. 17th International Conference on Extending Database Technology, Athens, 2014: 295-306.
|
CHEN Wei, LIN Tian, and YANG Cheng. Real-time topic-aware influence maximization using preprocessing[C]. International Conference on Computational Social Networks. Beijing, 2015: 1-13. doi: 10.1007/978-3-319-21786-4_1.
|
CHEN Shuo, FAN Ju, LI Guoliang, et al. Online topic-aware influence maximization[J]. Proceedings of the VLDB Endowment, 2015, 8(6): 666-677. doi: 10.14778/2735703. 2735706.
|
LI Yuchen, ZHANG Dongxiang, and TAN Kianlee. Real-time targeted influence maximization for online advertisements[J]. Proceedings of the VLDB Endowment, 2015, 8(10): 1070-1081. doi: 10.14778/2794367.2794376.
|
DUBEY P, GARG R, and DE MEYER B. Competing for Customers in a Social Network: The Quasi-linear Case[M]. Patras: Springer, 2006: 162-173.
|
CARNES T, NAGARAJAN C, WILD S M, et al. Maximizing influence in a competitive social network: A follower's perspective[C]. Proceedings of the Ninth International Conference on Electronic Commerce, New York, 2007: 351-360. doi: 10.1145/1282100.1282167.
|
BHARATHI S, KEMPE D, and SALEK M. Competitive Influence Maximization in Social Networks[M]. San Diego: Springer, 2007: 306-311.
|
KOSTKA J, OSWALD Y A, and WATTENHOFER R. Word of Mouth: Rumor Dissemination in Social Networks[M]. Villars-sur-Ollon, Switzerland: Springer, 2008: 185-196.
|
PATHAK N, BANERJEE A, and SRIVASTAVA J. A generalized linear threshold model for multiple cascades[C]. 2010 IEEE 10th International Conference on Data Mining (ICDM), Sydney, 2010: 965-970. doi: 10.1109/ICDM.2010. 153.
|
TRPEVSKI D, TANG W K S, and KOCAREV L. Model for rumor spreading over networks[J]. Physical Review E, 2010, 81(5): 056102. doi: 10.1103/PhysRevE.81.056102.
|
LI Hui, BHOWMICK S S, CUI Jiangtao, et al. GetReal: Towards realistic selection of influence maximization strategies in competitive networks[C]. Proceedings of the 2015 ACM SIGMOD International Conference on Management of Data, New York, 2015: 1525-1537. doi: 10.1145/2723372.2723710.
|
GOYAL S, HEIDARI H, and KEARNS M. Competitive contagion in networks[J]. Games and Economic Behavior, 2014. doi: 10.1016/j.geb.2014.09.002.
|
CHAOJI V, RANU S, RASTOGI R, et al. Recommendations to boost content spread in social networks[C]. Proceedings of the 21st International Conference on World Wide Web, New York, 2012: 529-538. doi: 10.1145/2187836.2187908.
|
KATONA Z, ZUBCSEK P P, and SARVARY M. Network effects and personal influences: The diffusion of an online social network[J]. Journal of Marketing Research, 2011, 48(3): 425-443. doi: 10.1509/jmkr.48.3.425.
|
DRAIEF M, HEIDARI H, and KEARNS M. New models for competitive contagion[C]. Twenty-eighth AAAI Conference on Artificial Intelligence, Qubec, 2014: 637-644.
|
BUDAK C, AGRAWAL D, and EL ABBADI A. Limiting the spread of misinformation in social networks[C]. Proceedings of the 20th International Conference on World Wide Web, New York, 2011: 665-674. doi: 10.1145/1963405.1963499.
|
HE Xinran, SONG Guojie, CHEN Wei, et al. Influence blocking maximization in social networks under the competitive linear threshold model[C]. 9th VLDB Workshop on Secure Data Management, Istanbul, 2012: 463-474. doi: 10.1137/1.9781611972825.40.
|
TSAI J, NGUYEN T H, and TAMBE M. Security games for controlling contagion[C]. Twenty-sixth AAAI Conference on Artificial Intelligence, Toronto, 2012: 1241-1248.
|
CHEN Wei, COLLINS A, CUMMINGS R, et al. Influence maximization in social networks when negative opinions may emerge and propagate[C]. SIAM Conference on Data Mining, Mesa, Arizona, USA, 2011: 379-390. doi: 10.1137/1. 9781611972818.33.
|
LI Yanhua, CHEN Wei, WANG Yajun, et al. Influence diffusion dynamics and influence maximization in social networks with friend and foe relationships[C]. Proceedings of the Sixth ACM International Conference on Web Cearch and Data Mining, New York, 2013: 657-666. doi: 10.1145/2433396. 2433478.
|
GOYAL A, BONCHI F, LAKSHMANAN L V S, et al. On minimizing budget and time in influence propagation over social networks[J]. Social Network Analysis and Mining, 2013, 3(2): 179-192. doi: 10.1007/s13278-012-0062-z.
|
CHEN Wei, LU Wei, and ZHANG Ning. Time-critical influence maximization in social networks with time-delayed diffusion process[C]. The Twenty-sixth AAAI Conference on Artificial Intelligence, Toronto, 2012: 592-598.
|
LIU Bo, CONG Gao, ZENG Yifeng, et al. Influence spreading path and its application to the time constrained social influence maximization problem and beyond[J]. IEEE Transactions on Knowledge and Data Engineering, 2014, 26(8): 1904-1917. doi: 10.1109/TKDE.2013.106.
|
KIM J, LEE W, and YU H. CT-IC: Continuously activated and time-restricted independent cascade model for viral marketing[J]. Knowledge-based Systems, 2014, 62: 57-68. doi: 10.1016/j.knosys.2014.02.013.
|
RODRIGUEZ M G and SCH LKOPF B. Influence maximization in continuous time diffusion networks[C]. Proceeding of the Twenty-ninth International Conference on Machine Learning, Edinburgh, 2012: 313-320. doi: 10.1145/ 2824253.
|
DU Nan, SONG Le, GOMEZ-RODRIGUEZ Manuel, et al. Scalable influence estimation in continuous-time diffusion networks[C]. Advances in Neural Information Processing Systems, Harrahs and Harveys, 2013: 3147-3155.
|
LONG Cheng and WONG R C W. Minimizing seed set for viral marketing[C]. 2011 IEEE 11th International Conference on Data Mining (ICDM), Vancouver, 2011: 427-436. doi: 10.1109/ICDM.2011.99.
|
ZHANG Peng, CHEN Wei, SUN Xiaoming, et al. Minimizing seed set selection with probabilistic coverage guarantee in a social network[C]. Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data
|
Mining, New York, 2014: 1306-1315. doi: 10.1145/2623330. 2623684.
|
IRIBARREN J L and MORO E. Impact of human activity patterns on the dynamics of information diffusion[J]. Physical Review Letters, 2009, 103(3): 038702. doi: 10.1103/PhysRev Lett.103.038702.
|
KARSAI M, KIVEL M, PAN R K, et al. Small but slow world: how network topology and burstiness slow down spreading[J]. Physical Review E, 2011, 83(2): 025102. doi: 10.1103/Phys RevE.83.025102.
|
RODRIGUEZ M G, BALDUZZI D, and SCH LKOPF B. Uncovering the temporal dynamics of diffusion networks[C]. Proceeding of the Twenty-eighth International Conference on Machine Learning, Bellevue, 2011: 561-568.
|
XIE Miao, YANG Qiusong, WANG Qing, et al. DynaDiffuse: A dynamic diffusion model for continuous time constrained influence maximization[C]. Twenty-ninth AAAI Conference on Artificial Intelligence, Austin, Texas, 2015: 346-352.
|
GOMEZ RODRIGUEZ M, LESKOVEC J, and KRAUSE A. Inferring networks of diffusion and influence[C]. Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, New York, 2010: 1019-1028. doi: 10.1145/1835804.1835933.
|