Advanced Search
Volume 39 Issue 3
Mar.  2017
Turn off MathJax
Article Contents
LI Jianfeng, JIANG Defu, SHEN Mingwei . Joint Two-dimensional Direction of Arrival Estimation Based on Cross Covariance Matrix of Parallel Nested Array[J]. Journal of Electronics & Information Technology, 2017, 39(3): 670-676. doi: 10.11999/JEIT160488
Citation: LI Jianfeng, JIANG Defu, SHEN Mingwei . Joint Two-dimensional Direction of Arrival Estimation Based on Cross Covariance Matrix of Parallel Nested Array[J]. Journal of Electronics & Information Technology, 2017, 39(3): 670-676. doi: 10.11999/JEIT160488

Joint Two-dimensional Direction of Arrival Estimation Based on Cross Covariance Matrix of Parallel Nested Array

doi: 10.11999/JEIT160488
Funds:

The Fundamental Research Funds for the Central Universities (2015B12614), A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions

  • Received Date: 2016-05-12
  • Rev Recd Date: 2016-09-06
  • Publish Date: 2017-03-19
  • A Cross Covariance Matrix (CCM) based Two Dimensional (2D) Direction Of Arrival (DOA) estimation algorithm for parallel nested array is proposed. A long virtual array can be achieved based on the CCM between the two parallel nested arrays, and 2D DOA estimation can be transformed to a 1D DOA estimation problem. Thereafter, virtual snapshots are increased by exploiting the Vandermonde structure of direction matrix, and the aperture loss is minimized when constructing covariance matrix from the virtual array. Finally, the proposed algorithm employs unitary Estimation of Signal Parameters via Rotational Invariance Technique (ESPRIT) and Total Least Squares (TLS) to reduce further the influence of noise and achieve automatically paired 2D DOA estimation. Compared to DOA estimation algorithms using conventional parallel array, the proposed algorithm can achieve better DOA estimation performance, identify more signals and is more robust to spatial color noise. The simulation results verify the effectiveness of the proposed algorithm.
  • loading
  • GERSHMAN A B, RBSAMEN M, and PESAVENTO M. One-and two-dimensional direction-of-arrival estimation: An overview of search-free techniques [J]. Signal Processing, 2010, 90(5): 1338-1349. doi: 10.1016/j.sigpro.2009.12.008.
    CHEN H, ZHU W P, and SWAMY M N S. Real-valued ESPRIT for two-dimensional DOA estimation of noncircular signals for acoustic vector sensor array[C]. IEEE International Symposium on Circuits and Systems (ISCAS), Lisbon, Portugal, 2015: 2153-2156. doi: 10.1109/ISCAS.2015. 7169106.
    蔡晶晶, 鲍丹, 李鹏, 等. 强约束优化降维MUSIC二维DOA估计[J]. 电子与信息学报, 2014, 36(5): 1113-1118. doi: 10. 3724/SP.J.1146.2013.01127.
    CAI Jingjing, BAO Dan, LI Peng, et al. Two-dimensional DOA estimation using reduced-dimensional MUSIC algorithm with strong-constraint optimization[J]. Journal of Electronics Information Technology, 2014, 36(5): 1113-1118. doi: 10.3724/SP.J.1146.2013.01127.
    张小飞, 张立岑, 孙华普, 等. 双平行线阵中基于Euler变换传播算子的二维DOA估计算法[J]. 南京航空航天大学学报, 2015, 47(3): 324-331. doi: 10.16356/j.1005-2615.2015.03.002.
    ZHANG Xiaofei, ZHANG Licen, SUN Huapu, et al. Two-dimensional DOA estimation algorithm for two parallel linear arrays via Eular transformation and propagator method[J]. Journal of Nanjing University of Aeronautics and Astronautics, 2015, 47(3): 324-331. doi: 10.16356/j.1005-2615. 2015.03.002.
    GU J F, ZHU W P, and SWAMY M N S. Joint 2-D DOA estimation via sparse L-shaped array[J]. IEEE Transactions on Signal Processing, 2015, 63(5): 1171-1182. doi: 10.1109/ TSP.2015.2389762.
    ZHANG W, LIU W, WANG J, et al. Computationally efficient 2-D DOA estimation for uniform rectangular arrays [J]. Multidimensional Systems Signal Processing, 2014, 25(4): 847-857. doi: 10.1007/s11045-013-0267-y.
    YIN Q Y, NEWCOMB R W, and ZOU L H. Estimating 2-D angles of arrival via two parallel linear arrays[C]. IEEE International Conference on Acoustics, Speech, and Signal Processing, Glasgow, UK, 1989: 2803-2806. doi: 10.1109/ ICASSP.1989.267051.
    XIA T, ZHENG Y, WAN Q, et al. Decoupled estimation of 2-D angles of arrival using two parallel uniform linear arrays [J]. IEEE Transactions on Antennas and Propagation, 2007, 55(9): 2627-2632. doi: 10.1109/TAP.2007.904143.
    LI J, ZHANG X, and CHEN H. Improved two-dimensional DOA estimation algorithm for two-parallel uniform linear arrays using propagator method[J]. Signal Processing, 2012, 92(12): 3032-3038. doi: 10.1016/j.sigpro.2012.06.010.
    CHEN H, HOU C, LIU W, et al. Efficient two-dimensional direction-of-arrival estimation for a mixture of circular and noncircular sources[J]. IEEE Sensors Journal, 2016, 16(8): 1-9. doi: 10.1109/JSEN.2016.2517128.
    YANG L, LIU S, LI D, et al. Fast 2D DOA estimation algorithm by an array manifold matching method with parallel linear arrays[J]. Sensors, 2016, 16(3): 274-289. doi: 10.3390/s16030274.
    崔琛, 梁浩, 余剑. 稀疏阵列MIMO雷达高精度收发角度联合估计[J]. 应用科学学报, 2015, 33(5): 527-540. doi: 10.3969/ j.issn.0255-8297.2015.05.007.
    CUI Chen, LIANG Hao, and YU Jian. Joint DOD and DOA estimation with high accuracy in bistatic MIMO radar using sparse array[J]. Journal of Applied Sicences, 2015, 33(5): 527-540. doi: 10.3969/j.issn.0255-8297.2015.05.007.
    MOFFET A. Minimum-redundancy linear arrays[J]. IEEE Transactions on Antennas and Propagation, 1968, 16(2): 172-175. doi: 10.1109/TAP.1968.1139138.
    HU N, YE Z, XU X, et al. DOA estimation for sparse array via sparse signal reconstruction[J]. IEEE Transactions on Aerospace and Electronic Systems, 2013, 49(2): 760-773. doi: 10.1109/TAES.2013.6494379.
    VAIDYANATHAN P P and PAL P. Sparse sensing with co-prime samplers and arrays[J]. IEEE Transactions on Signal Processing, 2011, 59(2): 573-586. doi: 10.1109/TSP. 2010.2089682.
    PAL P and VAIDYANATHAN P P. Nested arrays: a novel approach to array processing with enhanced degrees of freedom[J]. IEEE Transactions on Signal Processing, 2010, 58(8): 4167-4181. doi: 10.1109/TSP.2010.2049264.
    杨杰, 廖桂生. 基于空域稀疏性的嵌套MIMO雷达DOA估计算法[J]. 电子与信息学报, 2014, 36(11): 2698-2704. doi: 10. 3724/SP.J.1146.2013.01900.
    YANG Jie and LIAO Guisheng. A spatial sparsity-based DOA estimation method in nested MIMO radar[J]. Journal of Electronics Information Technology, 2014, 36(11): 2698-2704. doi: 10.3724/SP.J.1146.2013.01900.
    WU N and LIANG Q. Underwater DOA estimation based on nested array[C]. IEEE Military Communications Conference, Tampa, FL, USA, 2015: 216-221. doi: 10.1109/ MILCOM. 2015.7357445.
    丁姗姗, 张永顺, 牛超, 等. 一种基于KhatriRao子空间的非均匀稀疏阵列[J]. 空军工程大学学报:自然科学版, 2015, 16(5): 78-82. doi: 10.3969/j.issn.1009-3516.2015.05.019.
    DING Shanshan, ZHANG Yongshun, NIU Chao, et al. A novel spare linear array geometry via Khatri_Rao subspace [J]. Journal of Air Force Engineering University(Natural Science Edition), 2015, 16(5): 78-82. doi: 10.3969/j.issn. 1009-3516.2015.05.019.
    陈建锋, 吴云韬, 张贤达. 色噪声环境下的快速DOA估计算法[J]. 西安电子科技大学学报:自然科学版, 2004, 30(2): 151-154. doi: 10.3969/j.issn.1001-2400.2003.02.003.
    CHEN Jianfeng, WU Yuntao, and ZHANG Xianda. A novel method for estimating DOA in the presnece of unknown colored noise fields[J]. Journal of Xidian University (Natural Science Edition), 2004, 30(2): 151-154. doi: 10.3969/j.issn. 1001-2400.2003.02.003.
    LI J and ZHANG X. Unitary subspace-based method for angle estimation in bistatic MIMO radar[J]. Circuits, Systems, and Signal Processing, 2014, 33(2): 501-513. doi: 10.1007/s00034-013-9653-9.
    STEINWANDT J, ROEMER F, and HAARDT M. ESPRIT-Type algorithms for a received mixture of circular and strictly non-circular signals[C]. IEEE International Conference on Acoustics, Speech, and Signal Processing, South Brisbane, QLD, Australia, 2015: 2809-2813. doi: 10.1109/ICASSP.2015.7178483.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1468) PDF downloads(414) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return