Advanced Search
Volume 39 Issue 3
Mar.  2017
Turn off MathJax
Article Contents
MA Ming, SONG Qian, LI Yanghuan, GU Yang, ZHOU Zhimin. Magnetic-aided Heading Error Calibration Approach for Indoor Pedestrian Positioning[J]. Journal of Electronics & Information Technology, 2017, 39(3): 647-653. doi: 10.11999/JEIT160407
Citation: MA Ming, SONG Qian, LI Yanghuan, GU Yang, ZHOU Zhimin. Magnetic-aided Heading Error Calibration Approach for Indoor Pedestrian Positioning[J]. Journal of Electronics & Information Technology, 2017, 39(3): 647-653. doi: 10.11999/JEIT160407

Magnetic-aided Heading Error Calibration Approach for Indoor Pedestrian Positioning

doi: 10.11999/JEIT160407
  • Received Date: 2016-04-22
  • Rev Recd Date: 2016-11-23
  • Publish Date: 2017-03-19
  • In inertial based self-contained pedestrian positioning systems, because the drifts of the gyroscopes grow with time, it relies on the earth magnetic field to suppress the heading errors. However, the earth magnetic field suffers from severe interference in indoor scenarios, and the magnetometer itself has measurement errors, the above reasons have dramatically limited the performance of the magnetometer-aided heading error calibration. This paper proposes a magnetic-aided heading error calibration approach. Firstly, the magnetometer is calibrated according to the motion model of the pedestrian and the calibration coefficients obtained are used to improve the accuracy of heading derived by the magnetometer. On this basis, a proved Quasi-Static magnetic Field (QSF) detection approach is proposed to extract the usable magnetic information fed into Zero velocity UPdaTe (ZUPT)- aided Extended Kalman Filter (EKF) algorithm to conduct the heading calibration. The experiment results show that the 684 meter long walk only has a position error of less than 0.5 meter and heading error of 3.2 degrees, and the position error is less than 0.2% of the total walking distance. The results indicate that the performance of the proposed method is superior to the existing approach.
  • loading
  • LI Binghao, GALLAGHER T, DEMPSTER A, et al. How feasible is the use of magnetic field alone for indoor positioning[C]. 2012 International Conference on Indoor Positioning and Indoor Navigation (IPIN), Sydney, Australia, 2012: 1-9. doi: 10.1109/IPIN.2012.6418880.
    HIDE C, BOTTERILL T, and ANDREOTTI M. Low cost vision-aided IMU for pedestrian navigation[J]. Global Positioning Systems, 2011, 10: 3-10. doi: 10.1109/UPINLBS. 2010.5653658.
    SKOG I, NILSSON J, and HANDEL P. Pedestrian tracking using an IMU array[C]. International Conference on Electronics, Computing and Communication Technologies, Bangalore, India, 2014: 1-4. doi: 10.1109/CONECCT.2014. 6740346.
    GU Yang, SONG Qian, LI Yanghuan, et al. Foot-mounted pedestrian navigation based on particle filter with an adaptive weight updating strategy[J]. The Journal of Navigation, 2015, 68(1): 23-38. doi: 10.1017/S037346 3314000496.
    REN Mingrong, PAN Kai, LIU Yanhong, et al. A novel pedestrian navigation algorithm for a foot-mounted inertial- sensor-based system[J]. Sensors, 2016, 16(1): 139. doi: 10. 3390/s16010139.
    RUPPELT J, KRONENWETTG N, and TROMMER F. A novel finite state machine based step detection technique for pedestrian navigation systems[C]. International Conference on Indoor Positioning and Indoor Navigation (IPIN), Alberta, Canada, 2015: 1-7. doi: 10.1109/IPIN.2015.7346771.
    ANGERMANN M and ROBERTSON P. Foot-slam: Pedestrian simultaneous localization and mapping without exteroceptive sensors-hitchhiking on human perception and cognition[J]. Proceedings of the IEEE, 2012, 100: 1840-1848. doi: 10.1109/JPROC.2012. 2189785.
    BASIRI A, PELTOLA P, FIGUEIRED P, et al. Indoor positioning technology assessment using analytic hierarchy process for pedestrian navigation services[C]. International Conference on Localization and GNSS, Gothenburg, Sweden, 2015: 1-6. doi: 10.1109/ICL-GNSS.2015.7217157.
    GU Yang, MA Ming, LI Yanghuan, et al. Accurate height estimation based on a priori knowledge of buildings[C]. Proceedings of the International Conference on Indoor Positioning and Indoor Navigation (IPIN), Montbeliard, France, 2013: 28-31. doi: 10.1109/IPIN.2013.6817891.
    FOXLIN E. Pedestrian tracking with shoe-mounted inertial sensors[J]. Computer Graphics and Applications, 2005, 30(5): 20-26. doi: 10.1109/MCG.2005.140.
    NILSSON J, SKOG I, and HANDEL P. A note on the limitations of ZUPTs and the implications on sensor error modeling[C]. Proceedings of the International Conference on Indoor Positioning and Indoor Navigation (IPIN), Sydney, Australia, 2012: 20-22.
    JIMENEZ A, SECO F, PRIETO J, et al. Indoor pedestrian navigation using an INS/EKF framework for yaw drift reduction and a foot-mounted IMU[C]. Workshop on Positioning Navigation and Communication, Dresden, Germany, 2010: 135-143. doi: 10.1109/WPNC.2010.5649300.
    AFZAL M, RENAUDIN V, and LACHAPELLE G. Use of Earths magnetic field for mitigating gyroscope errors regardless of magnetic perturbation[J]. Sensors, 2011: 11(12): 11390-11414. doi: 10.3390/s111211390.
    BUSATO A, PACES P, and POPELKA J. Magnetometer data fusion algorithms performance in indoor navigation: Comparison, calibration and testing[C]. IEEE Metrology for Aerospace, Benevento, Italy, 2014: 388-393. 10.1109/Metro AeroSpace.2014.6865955.
    RENAUDIN V, AFZAL M, and LACHAPELLE G. New method for magnetometers based orientation estimation[C]. Position Location and Navigation Symposium, 2010: 348-356. doi: 10.1109/PLANS.2010.5507301.
    FENG Wenguang, LIU Shibin, LIU Shiwei, et al. A calibration method of three-axis magnetic sensor based on ellipsoid fitting[J]. Journal of Information Computational Science, 2013, 10(6): 1551-1558. doi: 10.12733/jics20101833.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1568) PDF downloads(507) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return