Advanced Search
Volume 39 Issue 3
Mar.  2017
Turn off MathJax
Article Contents
YUAN Jian, ZHU Shixin, KAI Xiaoshan. On Distances of Family of Constacyclic Codes over Finite Chain Rings[J]. Journal of Electronics & Information Technology, 2017, 39(3): 754-757. doi: 10.11999/JEIT160392
Citation: YUAN Jian, ZHU Shixin, KAI Xiaoshan. On Distances of Family of Constacyclic Codes over Finite Chain Rings[J]. Journal of Electronics & Information Technology, 2017, 39(3): 754-757. doi: 10.11999/JEIT160392

On Distances of Family of Constacyclic Codes over Finite Chain Rings

doi: 10.11999/JEIT160392
Funds:

The National Natural Science Foundation of China (61370089, 60973125), The Open Research Fund of National Mobile Communications Research Laboratory, Southeast University (2014D04), The Natural Science Foundation of Anhui Province (1508085SQA198)

  • Received Date: 2016-04-22
  • Rev Recd Date: 2016-09-23
  • Publish Date: 2017-03-19
  • In coding theory, the (minimum) distance of a code is a very important invariant, which always determines the error-correcting capability of the code. Let R be an arbitrary commutative finite chain ring, a is a generator of the unique maximal ideal andR* is the multiplicative group of units of R. In this paper, for any wR*, by using the generator polynomials of (1+aw)-constacyclic codes of any length over R, higher torsion codes of such codes are calculated. The Hamming distance of all(1+aw)-constacyclic codes of any length overR is determined and the exact homogeneous distance of some such codes is obtained. The result provides a theoretical basis for encoding and decoding for such constacyclic codes.
  • loading
  • HAMMONS A R Jr., KUMAR P V, CALDERBANK A R, et al. TheZ4-linearity of Kerdock, Preparata, Goethals and related codes[J]. IEEE Transactions on Information Theory, 1994, 40(2): 301-319. doi: 10.1109/18.312154.
    施敏加, 杨善林, 朱士信. 环F2+uF2++uk-1F2上长度为2s的(1+u)-常循环码的距离分布[J]. 电子与信息学报, 2010, 32(1): 112-116. doi: 10.3724/SP.J.1146.2008.01810.
    SHI M J, YANG S L, and ZHU S X. The distributions of distances of (1+u)-constacyclic codes of length2s overF2+uF2++uk-1F2[J]. Journal of Electronics Information Technology, 2010, 32(1): 112-116. doi: 10.3724/ SP.J.1146.2008.01810.
    KONG B, ZHENG X Y, and MA H J. The depth spectrums of constacyclic codes over finite chain rings[J]. Discrete Mathematics, 2015, 338(2): 256-261. doi: 10.1016/j.disc.2014. 09.013.
    QIAN K Y, ZHU S X, and KAI X S. On cyclic self-orthogonal codes over Z2m[J]. Finite Fields and Their Applications, 2015, 33: 53-65. doi: 10.1016/j.ffa.2014.11.005.
    DINH H Q, DHOMPONGSA S, and SRIBOONCHITTA S. Repeated-root constacyclic codes of prime power length overFpm[u]/ua and their duals[J]. Discrete Mathematics, 2016, 339(6): 1706-1715. doi: 10.1016/j.disc.2016.01.020.
    WOLFMANN J. Negacyclic and cyclic codes over Z4[J]. IEEE Transactions on Information Theory, 1999, 45(7): 2527-2532. doi: 10.1109/18.796397.
    NORTON G H andSǎLǎGAN A. On the structure of linear and cyclic codes over a finite chain ring[J]. Applicable Algebra in Engineering, Communication and Computing, 2000, 10(6): 489-506. doi: 10.1007/PL00012382.
    NORTON G H and SǎLǎGAN A. On the Hamming distance of linear codes over a finite chain ring[J]. IEEE Transactions on Information Theory, 2000, 46(3): 1060-1067. doi: 10.1109/18.841186.
    GREFERATH M and SCHMIDT S E. Gray isometries for finite chain rings and a nonlinear ternary (36,312,15)code[J]. IEEE Transactions on Information Theory, 1999, 45(7): 2522-2524. doi: 10.1109/18.796395.
    CAO Y L. On constacyclic codes over finite chain rings[J]. Finite Fields and Their Applications, 2013, 24: 124-135. doi: 10.1016/j.ffa.2013.07.001.
    MCDONALD B R. Finite Rings with Identity[M]. New York, Marcel Dekker Press, 1974: 56-97.
    DINH H Q. Constacyclic codes of lengthps over Fpm+uFpm[J]. Journal of Algebra, 2010, 324(5): 940-950. doi: 10.1016/j.jalgebra.2010.05.027.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (998) PDF downloads(418) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return