Advanced Search
Volume 39 Issue 2
Feb.  2017
Turn off MathJax
Article Contents
LIU Yan, YU Huai, YANG Wen, LI Li. SAR Image Registration Using SAR-FAST Corner Detection[J]. Journal of Electronics & Information Technology, 2017, 39(2): 430-436. doi: 10.11999/JEIT160386
Citation: LIU Yan, YU Huai, YANG Wen, LI Li. SAR Image Registration Using SAR-FAST Corner Detection[J]. Journal of Electronics & Information Technology, 2017, 39(2): 430-436. doi: 10.11999/JEIT160386

SAR Image Registration Using SAR-FAST Corner Detection

doi: 10.11999/JEIT160386
Funds:

The National Natural Science Foundation of China (61271401,61331016)

  • Received Date: 2016-04-20
  • Rev Recd Date: 2016-08-30
  • Publish Date: 2017-02-19
  • As the basis of change detection and image fusion, SAR image registration plays an important role in the interpretation of multi-temporal SAR images. This paper presents a method of SAR image registration based on corner detection using SAR-FAST, which is a customized version of Features from Accelerated Segment Test (FAST) for processing SAR images. The proposed method firstly employs rolling guidance filter to suppress speckle noise. Secondly, the candidate corner point is determined by quantitative analysis of the dissimilarities of the detection windows on the extended circle and the center window. Finally, the error detections are removed by analyzing the intensity distribution properties of the candidate corners. The experimental results show that SAR-FAST can detect a sufficient number of corners with stability and high repeatability, and when applying to image registration, it also can get better registration results.
  • loading
  • 王国力, 周伟, 柴勇, 等. 基于单演信号理论的SAR图像配准[J]. 电子与信息学报, 2013, 35(8): 1779-1785 doi: 10.3724/ SP.J.1146.2012.01487.
    WANG Guoli, ZHOU Wei, CHAI Yong, et al. SAR image registration based on monogenic signal theory[J]. Journal of Electronics Information Technology, 2013, 35(8): 1779-1785. doi: 10.3724/SP.J.1146.2012.01487.
    DALIMIYA C and DHARUN V. A survey of registration techniques in remote sensing images[J]. Indian Journal of Science and Technology, 2015, 26(8). Paper No. 24, doi: 10.17485/ijst/ 2015/v8i26/81048.
    ZHANG H, NI W, YAN W, et al. Robust SAR image registration based on edge matching and refined coherent point drift[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(10): 2115-2119. doi: 10.1109/LGRS.2015.2451396.
    李英杰, 张俊举, 常本康, 等. 一种多波段红外图像联合配准和融合方法[J]. 电子与信息学报, 2016, 38(1): 8-14. doi: 10.11999/JEIT150479.
    LI Yingjie, ZHANG Junju, CHANG Benkang, et al. Joint image registration and fusion for multispectral infrared images[J]. Journal of Electronics Information Technology, 2016, 38(1): 8-14. doi: 10.11999/JEIT150479.
    邓梁, 史仪凯, 张均田. 基于时变医学先验信息的约束成像及图像配准方法[J]. 电子与信息学报, 2013, 35(12): 2942-2947. doi: 10.3724/SP.J.1146.2012.01565.
    DENG Liang, SHI Yikai, and ZHANG Juntian. A constrained imaging and registration scheme based on time-varying anatomical priors [J]. Journal of Electronics Information Technology, 2013, 35(12): 2942-2947. doi: 10.3724/SP.J.1146.2012.01565.
    WANG S, YOU H, and FU K. BFSIFT: A novel method to find feature matches for SAR image registration[J]. IEEE Geoscience and Remote Sensing Letters, 2012, 9(4): 649-653. doi: 10.1109/LGRS.2011.2177437.
    LOWE D. Object recognition from local scale-invariant features[C]. IEEE International Conference on Computer Vision, Corfu, Greece, 1999: 1150-1157.
    SCHWIND P, SURI S, and REINARTZ P. Applicability of the SIFT operator to geometric SAR image registration[J]. International Journal of Remote Sensing, 2010, 31(8): 1959-1980. doi: 10.1080/01431160902927622.
    WANG B, ZHANG J, LU L, et al. A uniform SIFT-like algorithm for SAR image registration[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 12(7): 1426-1430. doi: 10.1109/LGRS.2015.2406336.
    DELLINGER F, DELON J, GOUSSEAU Y, et al. SAR-SIFT: A SIFT-like algorithm for SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53 (1): 453-466. doi: 10.1109/TGRS.2014.2323552.
    HARRIS C and STEPHENS M. A combined corner and edge detector[C]. Proceedings of the Fourth Alvey Vision Conference, Manchester, UK. 1988: 147-151.
    ROSTEN E, PORTER R, and DRUMMOND T. Faster and better: a machine learning approach to corner detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(1): 105-119. doi: 10.1109/ TPAMI.2008.275
    ZHANG Q, SHEN X, XU L, et al. Rolling guidance filter[C]. European Conference on Computer Vision, Zurich, Switzerland, 2014: 815-830.
    MOHANNA F, MOKHTARIAN F. Performance evaluation of corner detection algorithms under affine and similarity transforms[C]. 12th British Machine Vision Conference, Manchester, UK, 2001: 1-10
    BAY H, TUYTELAARS T, VAN G, et al. SURF: speeded-up robust features[J]. International Journal on Computer Vision and Image Understanding, 2008, 110(3): 346-359. doi: 10.1007/11744023_32.
    LEUTENEGGER S, CHLI M, SIEGWART R, et al. BRISK: Binary robust invariant scalable keypoints[C]. IEEE International Conference on Computer Vision, Barcelona, Spain, 2011: 2548-2555.
    CALONDER M, LEPETIT V, STRECHA C, et al. Brief: Binary robust independent elementary features[C]. European Conference on Computer Vision 2010, Heraklion, Greece, 2010: 778-792.
    ANDONI A and INDYK P. Near-optimal hashing algorithms for approximate nearest neighbor in high dimensions[J]. Communications of the Association for Computing Machinery, 2008, 51(1): 117-122.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1839) PDF downloads(426) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return