Advanced Search
Volume 39 Issue 2
Feb.  2017
Turn off MathJax
Article Contents
YAO Linyuan, DONG Ping, ZHANG Hongke. Distributed Denial of Service Attack Detection Based on Object Character in Software Defined Network[J]. Journal of Electronics & Information Technology, 2017, 39(2): 381-388. doi: 10.11999/JEIT160370
Citation: YAO Linyuan, DONG Ping, ZHANG Hongke. Distributed Denial of Service Attack Detection Based on Object Character in Software Defined Network[J]. Journal of Electronics & Information Technology, 2017, 39(2): 381-388. doi: 10.11999/JEIT160370

Distributed Denial of Service Attack Detection Based on Object Character in Software Defined Network

doi: 10.11999/JEIT160370
Funds:

The National Key Basic Research Program of China (2013CB329100), The National High Technology Research and Development Program 863 (2015AA016103), The National Natural Science Foundation of China (61301081), SGRIXTJSFW ([2016]377)

  • Received Date: 2016-04-18
  • Rev Recd Date: 2016-10-19
  • Publish Date: 2017-02-19
  • During the Distributed Denial of Service (DDoS) attack happening in Software Defined Network (SDN) network, the attackers send a large number of data packets. Large quantities of new terminal identifiers are generated. Accordingly, the network connection resources are occupied, obstructing the normal operation of the network. To detect the attacked target accurately, and release the occupied resources, a DDoS attack detection method based on object features with the GHSOM technology is provided. First, the seven-tuple is proposed for detection to determine whether the target address is under attack by DDoS. Then, a simulation platform is built, which is based on the OpenDayLight controller. GHSOM algorithm is applied to the network. Simulation experiments are performed to validate the feasibility of the detection method. The results show that the seven-tuple for detection can effectively confirm whether the target object is under a DDoS attack.
  • loading
  • BENSON T, AKELLA A, and MALTZ D A. Unraveling the Complexity of Network Management[C]. 6th USENIX Symposium on Networked Systems Design and Implementation, Boston, MA, USA, 2009: 335-348.
    KREUTZ D, RAMOS F M V, ESTEVES VERISSIMO P, et al. Software-defined networking: A comprehensive survey[J]. Proceedings of the IEEE, 2015, 103(1): 14-76. doi: 10.1109/ jproc.2014.2371999.
    MCKEOWN N. How SDN will shape networking[C]. Open Networking Summit, Palo Alto, CA, USA, 2011: 56-61.
    SHENKER S, CASADO M, KOPONEN T, et al. The future of networking, and the past of protocols[C]. Open Networking Summit, Palo Alto, CA, USA, 2011: 24-29.
    KANDOI R and ANTIKAINEN M. Denial-of-service attacks in OpenFlow SDN networks[C]. 2015 IFIP/IEEE International Symposium on Integrated Network Management (IM), Ottawa, BC, Canada, 2015: 1322-1326. doi: 10.1109/inm.2015.7140489.
    SHIN S, YEGNESWARAN V, PORRAS P, et al. Avant- guard: Scalable and vigilant switch flow management in software-defined networks[C]. Proceedings of the 2013 ACM SIGSAC Conference on Computer Communications Security, Berlin, Germany, 2013: 413-424. doi: 10.1145/ 2508859.2516684.
    ASHRAF J and LATIF S. Handling intrusion and DDoS attacks in software defined networks using machine learning techniques[C]. IEEE 2014 National Software Engineering Conference (NSEC), Event-Karachi, Pakistan, 2014: 55-60. doi: 10. 1109/nsec.2014.6998241.
    杨雅辉, 姜电波, 沈晴霓, 等. 基于改进的GHSOM的入侵检测研究[J]. 通信学报, 2011, 32(1): 121-126. doi: 10.3969/j. issn.1000-436X.2011.01.016.
    YANG Yahui, JIANG Dianbo, SHEN Qingni, et al. Research on intrusion detection based on an improved GHSOM[J]. Journal on Communications, 2011, 32(1): 121-126. doi: 10. 3969/j.issn.1000-436X.2011.01.016.
    BRAGA R, MOTA E, and PASSITO A. Lightweight DDoS flooding attack detection using NOX/OpenFlow[C]. IEEE 2010 35th Conference on Local Computer Networks (LCN), Denver, Colorado, USA, 2010: 408-415. doi: 10.1109/lcn. 2010.5735752.
    MOUSAVI S M and ST-HILAIRE M. Early detection of DDoS attacks against SDN controllers[C]. IEEE 2015 International Conference on Computing, Networking and Communications (ICNC), Anaheim, California, USA, 2015: 77-81. doi: 10.1109/iccnc.2015.7069319.
    GIOTIS K, ARGYROPOULOS C, ANDROULIDAKIS G, et al. Combining OpenFlow and sFlow for an effective and scalable anomaly detection and mitigation mechanism on SDN environments[J]. Computer Networks, 2014, 6(2): 122-136. doi: 10.1016/j.bjp.2013.10.014.
    PORRAS P, SHIN S, YEGNESWARAN V, et al. A security enforcement kernel for OpenFlow networks[C]. Proceedings of the First Workshop on Hot Topics in Software Defined Networks, Helsinki, Finland, 2012: 121-126. doi: 10.1145/ 2342441.2342466.
    MIHAI-GABRIEL I and VICTOR-VALERIU P. Achieving DDoS resiliency in a software defined network by intelligent risk assessment based on neural networks and danger theory[C]. IEEE 2014 15th International Symposium on Computational Intelligence and Informatics (CINTI), Budapest, Hungary, 2014: 319-324. doi: 10.1109/CINTI. 2014.7028696.
    RAUBER A, MERKL D, and DITTENBACH M. The growing hierarchical self-organizing map: exploratory analysis of high-dimensional data[J]. IEEE Transactions on Neural Networks, 2002, 13(6): 1331-1341. doi: 10.1109/tnn. 2002.804221.
    HUANG S Y and HUANG Y. Network forensic analysis using growing hierarchical SOM[C]. IEEE 2013 13th International Conference on Data Mining Workshops (ICDMW), Brisbane, Australia, 2013: 536-543. doi: 10.1109/icdmw.2013.66.
    html, 2016.
    鲍旭华, 洪海, 曹志华. 破坏之王: DDoS攻击与防范深度剖析[M]. 北京: 机械工业出版社, 2014: 20-76.
    BAO Xuhua, HONG Hai, AND CAO Zhihua. The King of Destruction: DDoS Attact and Defense Depth Analysis[M]. Beijing: China Machine Press, 2014: 20-76.
    BORGNAT P, DEWAELE G, FUKUDA K, et al. Seven years and one day: Sketching the evolution of internet traffic[C]. IEEE 2009 INFOCOM, Rio de Janeiro, Brazil, 2009: 711-719. doi: 10.1109/infcom.2009.5061979.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1386) PDF downloads(508) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return