Advanced Search
Volume 39 Issue 2
Feb.  2017
Turn off MathJax
Article Contents
LIU Shujun, YANG Ting, TANG Mingchun, WANG Pin, LI Yongming. Study on Stochastic Resonance Algorithm Based on Bayes Criterion[J]. Journal of Electronics & Information Technology, 2017, 39(2): 293-300. doi: 10.11999/JEIT160361
Citation: LIU Shujun, YANG Ting, TANG Mingchun, WANG Pin, LI Yongming. Study on Stochastic Resonance Algorithm Based on Bayes Criterion[J]. Journal of Electronics & Information Technology, 2017, 39(2): 293-300. doi: 10.11999/JEIT160361

Study on Stochastic Resonance Algorithm Based on Bayes Criterion

doi: 10.11999/JEIT160361
Funds:

The Basic and Advanced Research Project in Chongqing (cstc2016jcyjA0134, cstc2016jcyjA0043), The National Natural Science Foundation of China (61501072, 61301224, 41404027, 61108086, 61471072), The Chongqing Social Undertaking and People,s Livelihood Guarantee Science and Technology Innovation Special Foundation (cstc2016shmszx40002), The Fundamental Research Funds for the Central Universities (CDJZR155507)

  • Received Date: 2016-04-14
  • Rev Recd Date: 2016-10-18
  • Publish Date: 2017-02-19
  • The optimal noise that minimizes Bayes risk for a binary hypothesis testing problem is analyzed firstly. As a result, the minimization of Bayes risk can be equivalent as the optimization of the detection probability and/or false alarm probability . Secondly, a noise enhanced model, which can increase and decrease simultaneously, is established under the premise of maintaining predefined and . Then the optimal additional noise of this model is obtained by a convex combination of two optimal noises of two limit cases, which are the minimization of with maintaining the predefined and the maximization of with maintaining the predefined , respectively. Furthermore, the sufficient conditions for this model are given. Whats more, the additive noise that minimizes the Bayes risk is determined when the prior probabilities are known or not, and the corresponding additive noise can be obtained by recalculating a parameter only if the prior information changes. Finally, the availability of algorithm is proved through the simulation combined with a specific detection example.
  • loading
  • COHEN L. The history of noise[J]. IEEE Signal Processing Magazine, 2005, 22(6): 20-45. doi: 10.1109/MSP.2005. 1550188.
    BENZI R, SUTERA A, and VULPIANI A. The mechanism of stochastic resonance[J]. Journal of Physics A: Mathematical General, 1981, 14(11): L453-L457. doi: 10.1088 /0305-4470/14/11/006.
    张雷, 宋爱国. 随机共振在信号处理中应用研究的回顾与展望[J]. 电子学报, 2009, 37(4): 811-818. doi: 10.3321/j.issn: 0372-2112.2009.04.025.
    ZHANG Lei and SONG Aiguo. Development and prospect of stochastic resonance in signal processing[J]. Acta Electronica Sinica, 2009, 37(4): 811-818. doi: 10.3321/j.issn:0372-2112. 2009.04.025.
    ADDESSOA P, PIERROB V, and FILATRELLA G. Interplay between detection strategies and stochastic resonance properties[J]. Communications in Nonlinear Science Numerical Simulation, 2015, 30(1/3): 15-31. doi: 10.1016/j.cnsns.2015.05.026.
    YU Haitao, GUO Xinmeng, WANG Jiang, et al. Adaptive stochastic resonance inself-organized small-world neuronal networks with time delay[J]. Communications in Nonlinear Science Numerical Simulation, 2015, 29(1/3): 346-358. doi: 10.1016/j.cnsns.2015.05.017.
    张海滨, 何清波, 孔凡让. 基于变参数随机共振和归一化变换的时变信号检测与恢复[J]. 电子与信息学报, 2015, 37(9): 2124-2131. doi: 10.11999/JEIT141618.
    ZHANG Haibin, HE Qingbo, and KONG Fanrang. Time-varying signal detection and recovery method based on varying parameter stochastic resonance and normalization transformation[J]. Journal of Electronics Information Technology, 2015, 37(9): 2124-2131. doi: 10.11999/ JEIT141618.
    侯成郭, 罗柏文, 李地. 线性调频信号的级联随机共振数字化接收[J]. 电子与信息学报, 2015, 37(12): 2866-2871. doi: 10.11999/JEIT141496.
    HOU Chengguo, LUO Bowen, and Li Di. Cascaded stochastic resonance for digitized receiving of linear frequency modulation signal[J]. Journal of Electronics Information Technology, 2015, 37(12): 2866-2871. doi: 10.11999/ JEIT141496.
    CHEN Hao, VARSHNEY L R, and VARSHNEY P K. Noise-enhanced information systems[J]. Proceeding of the IEEE, 2014, 102(10): 1607-1621. doi: 10.1109/JPROC.2014. 2341554.
    LIU Shujun, YANG Ting, and ZHANG Xinzheng. Effects of stochastic resonance for linearquadratic detector[J]. Chaos, Solitons Fractals, 2015, 77(1): 319-331. doi: 10.1016/j. chaos.2015.06.015.
    LU Zeqi, CHEN Liqun, MICHAEL J B, et al. Stochastic resonance in a nonlinear mechanical vibration isolation system[J]. Journal of Sound Vibration, 2016, 370: 221-229. doi: 10.1016/j.jsv.2016.01.042.
    邓冬虎, 朱小鹏, 张群, 等. 基于随机共振理论的双基ISAR 弱信号提取及成像分析[J]. 电子学报, 2012, 40(9): 1809-1816. doi: 10.3969/j.issn.0372-2112.2012.09.017.
    DENG Donghu, ZHU Xiaopeng, ZHANG Qun, et al. Weak signals extraction and imaging analysis in bistatic ISAR systems based on stochastic resonance[J]. Acta Electronica Sinica, 2012, 40(9): 1809-1816. doi: 10.3969/j.issn.0372-2112. 2012.09.017.
    MITAIM S and KOSKO B. Adaptive stochastic resonance in noisy neurons based on mutual information[J]. IEEE Transactions on Neural Networks, 2004, 15(6): 1526-1540. doi: 10.1109/TNN.2004.826218.
    高锐, 李赞, 吴利平, 等. 低信噪比条件下基于随机共振的感知方法与性能分析[J]. 电子学报, 2013, 41(9): 1672-1679. doi: 10.3969/j.issn.0372-2112.2013.09.002.
    GAO Rui, LI Zan, WU Liping, et al. A spectrum sensing method and performance analysis based on stochastic resonance under low SNR[J]. Acta Electronica Sinica, 2013, 41(9): 1672-1679. doi: 10.3969/j.issn.0372-2112.2013.09.002.
    KAY S M, MICHELS J H, CHEN Hao, et al. Reducing probability of decision error using stochastic resonance[J]. IEEE Signal Processing Letters, 2009, 13(11): 695-698. doi: 10.1109/LSP.2006.879455.
    CHEN Hao, VARSHNEY P K, KAY S M, et al. Theory of the stochastic resonance effect in signal detection: Part I Fixed detectors[J]. IEEE Transactions on Signal Processing, 2007, 55(7): 3172-3184. doi: 10.1109/TSP.2007.893757.
    BAYRAM S, GEZICI S, and VINCENT P H. Noise enhanced hypothesis-testing in the restricted Bayesian framework[J]. IEEE Transactions on Signal Processing, 2010, 58(8): 3972-3989. doi: 10.1109/TSP.2010.2048107.
    BAYRAM S and GEZICI S. Noise enhanced M-ary hypothesis-testing in the Minimax framework[C]. The 3rd International Conference on Signal Processing Communication Systems (ICSPCS), Omaha, NE, USA, 2009: 16. doi: 10.1109/ICSPCS.2009.5306400.
    盛骤, 谢式千, 潘承毅. 概率论与数理统计[M]. 北京: 高等教育出版社, 2010: 7677.
    SHENG Zhou, XIE Shiqian, and PAN Chengyi. Probability and Statistics[M]. Beijing: Higher Education Press, 2010: 7677.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1269) PDF downloads(459) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return