Advanced Search
Volume 39 Issue 2
Feb.  2017
Turn off MathJax
Article Contents
SONG Dan, FAN Xiaoping, WEN Zhonghua, HUANG Dazu, QU Xilong. Double Clonal Selection Algorithm Based on Fuzzy Non-genetic Information Memory[J]. Journal of Electronics & Information Technology, 2017, 39(2): 255-262. doi: 10.11999/JEIT160359
Citation: SONG Dan, FAN Xiaoping, WEN Zhonghua, HUANG Dazu, QU Xilong. Double Clonal Selection Algorithm Based on Fuzzy Non-genetic Information Memory[J]. Journal of Electronics & Information Technology, 2017, 39(2): 255-262. doi: 10.11999/JEIT160359

Double Clonal Selection Algorithm Based on Fuzzy Non-genetic Information Memory

doi: 10.11999/JEIT160359
Funds:

The National Natural Science Foundation of China (61272295, 61673164, 61402540), The Natural Science Foundation of Hunan Province (2016JJ6031, 2016JJ2040), The Scientific Research Fund of Hunan Provincial Education Department (16A049, 13A010)

  • Received Date: 2016-04-14
  • Rev Recd Date: 2016-09-20
  • Publish Date: 2017-02-19
  • To provide a better solution for search efficiency reduction problem caused by pseudo collision in the traditional intelligent optimization algorithms, this paper proposes a double clonal selection algorithm based on fuzzy non-genetic information memory. By combing with clonal selection theory, the search mechanism based on fuzzy non-genetic information memory is well performed. The non-genetic information in antibody evolution is collected, fuzzified and stored in the memory. Using this information to guide the subsequent double cloning search process, it can reduce the pseudo collision in non-optimal area, thus the global search efficiency is improved greatly. Extensive simulations show that the proposed algorithm has fast global convergence rate and high global convergence accuracy. Comparative results further demonstrate that it performs better than existing algorithms.
  • loading
  • DE CASTRO L N and VON ZUBEN F J. Learning and optimization using the clonal selection principle[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(3): 239-251. doi: 10.1109/TEVC.2002.1011539.
    GONG Maoguo, JIAO Licheng, and ZHANG Lining. Baldwinian learning in clonal selection algorithm for optimization[J]. Information Sciences, 2010, 180(8): 1218-1236. doi: 10.1016/j.ins.2009.12.007.
    IRINA Ciornei and ELIAS Kyriakides. Hybrid ant colony-genetic algorithm (GAAPI) for global continuous optimization[J]. IEEE Transactions on Systems, Man, and Cybernetics, 2012, 42(1): 234-245. doi: 10.1109/TSMCB. 2011.2164245.
    HO S L, YANG S Y, BAI Y N, et al. A robust metaheuristic combining clonal colony optimization and population-based incremental learning methods[J]. IEEE Transactions on Magnetics, 2014, 50(2): 677-680. doi: 10.1109/TMAG.2013. 2283886.
    PENG Y and LU B L. Hybrid learning clonal selection algorithm[J]. Information Sciences, 2015, 296(1): 128-146. doi: 10.1016/j.ins.2014.10.056.
    TAYARANI-N M, YAO X, and XU M. Meta-heuristic algorithms in car engine design: A literature survey[J]. IEEE Transactions on Evolutionary Computation, 2015, 19(5): 609-629. doi: 10.1109/tevc.2014.2355174.
    CAMPELO F, GUIMARES F G, IGARASHI H, et al. A clonal selection algorithm for optimization in electromagnetics[J]. IEEE Transactions on Magnetics, 2005, 41(5): 1736-1739. doi: 10.1109/tmag.2005.846043.
    LIU R C, JAO L C, ZHANG X, et al. Gene transposon based clone selection algorithm for automatic clustering[J]. Information Sciences, 2012, 204(22): 1-22. doi: 10.1016/ j.ins.2012.03.021.
    SHANG R H, JIAO L C, XU H, et al. Quantum immune Clone for Solving constrained multi-objective Optimization [C]. 2015 IEEE Congress on Evolutionary Compntation, Sendai, Japan, 2015: 3049-3056. doi: 10.1109/CEC.2015. 7257269.
    高维尚, 邵诚, 高琴. 群体智能优化中的虚拟碰撞: 雨林算法[J]. 物理学报, 2013, 62(19): 28-43. doi: 10.7498/aps.62. 190202.
    GAO Weishang, SHAO Cheng, and GAO Qin. Pseudo- collision in swarm optimization algorithm and solution: Rain forest algorithm[J]. Acta Physica Sinica, 2013, 62(19): 28-43. doi: 10.7498/aps.62.190202.
    MININNO E, NERI F, CUPERTINO F, et al. Compact differential evolution[J]. IEEE Transactions on Evolutionary Computation, 2011, 15(1): 32-54. doi: 10.1109/tevc.2010. 2058120.
    SABAR N R, AYOB M, KENDALL G, et al. Grammatical evolution hyper-heuristic for combinatorial optimization problems[J]. IEEE Transactions on Evolutionary Computation, 2013, 17(6): 840-861. doi: 10.1109/TEVC.2013. 2281527.
    BOUAZIZ S, ALIMI A M, and ABRAHAM A. PSO-based update memory for improved harmony search algorithm to the evolution of FBBFNT parameters[C]. 2014 IEEE Congress on Evolutionary Computation (CEC), Beijing, China, 2014: 1951-1958. doi: 10.1109/CEC.2014.6900304.
    刘若辰, 贾建, 赵梦玲, 等. 一种免疫记忆动态克隆策略算法[J]. 控制理论与应用, 2007, 24(5): 777-784. doi: 10.3969/j. issn.1000-8152.2007.05.016.
    LIU Ruochen, JIA Jian, ZHAO Mengling, et al. An immune memory dynamic clonal strategy algorithm[J]. Control Theory Applications, 2007, 24(5): 777-784. doi: 10.3969/ j.issn.1000-8152.2007.05.016.
    朱思峰, 刘芳, 柴争义, 等. 简谐振子免疫优化算法求解异构无线网络垂直切换判决问题[J]. 物理学报, 2012, 61(9): 375-384. doi: 10.7498/aps.61.096401.
    ZHU Sifeng, LIU Fang, CHAI Zhengyi, et al. Simple harmonic oscillator immune optimization algorithm for solving vertical handoff decision problem in heterogeneous wireless network[J]. Acta Physica Sinica, 2012, 61(9): 375-384. doi: 10.7498/aps.61.096401.
    ZITZLER E and THIELE L. Multi-objective evolutionary algorithms: A comparative case study and the strength Pareto approach[J]. IEEE Transactions on Evolutionary Computation, 1999, 3(4): 257-271. doi: 10.1109/4235.797969.
    ZITZLER E, LAUMANNS M, and THIELE L. SPEA2: Improving the strength Pareto evolutionary algorithm[C]. Proceedings of the Evolutionary Methods for Design, Optimization and Control with Application to Industrial Problems, Athens, Greece, 2001: 19-26.
    CAI Zixing and WANG Yong. A multiobjective optimization based evolutionary algorithm for constrained optimization[J]. IEEE Transactions on Evolutionary Computation, 2006, 10(6): 658-675. doi: 10.1109/TEVC.2006.872344.
    邓泽林, 谭冠政, 何锫, 等. 一种基于动态识别邻域的免疫网络分类算法及其性能分析[J]. 电子与信息学报, 2015, 37(5): 1167-1172. doi: 10.11999/JEIT141077.
    DENG Zelin, TAN Guanzheng, HE Pei, et al. A dynamic recognition neighborhood based immune network classification algorithm and its performance analysis[J]. Journal of Electronics Information Technology, 2015, 37(5): 1167-1172. doi: 10.11999/JEIT141077.
    WANG H, WU Z and RAHANAMAYAN S. Enhancing particle swarm optimization using generalized opposition based learning[J]. Information Sciences, 2011, 181(20): 4699-4714. doi: 10.1016/j.ins.2011.03.016.
    喻飞, 李元香, 魏波, 等. 透镜成像反学习策略在粒子群算法中的应用[J]. 电子学报, 2014, 42(2): 230-235. doi: 10.3969/ j.issn.0372-2112.2014.02.004.
    YU Fei, LI Yuanxiang, WEI Bo, et al. The application of a novel OBL based on lens imaging principle in PSO[J]. Acta Electronica Sinica, 2014, 42(2): 230-235. doi: 10.3969/j.issn. 0372-2112.2014.02.004.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1435) PDF downloads(559) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return