Advanced Search
Volume 39 Issue 2
Feb.  2017
Turn off MathJax
Article Contents
WANG Hai, CAI Yingfeng, JIA Yunyi, CHEN Long, JIANG Haobin. Scene Adaptive Road Segmentation Algorithm Based on Deep Convolutional Neural Network[J]. Journal of Electronics & Information Technology, 2017, 39(2): 263-269. doi: 10.11999/JEIT160329
Citation: WANG Hai, CAI Yingfeng, JIA Yunyi, CHEN Long, JIANG Haobin. Scene Adaptive Road Segmentation Algorithm Based on Deep Convolutional Neural Network[J]. Journal of Electronics & Information Technology, 2017, 39(2): 263-269. doi: 10.11999/JEIT160329

Scene Adaptive Road Segmentation Algorithm Based on Deep Convolutional Neural Network

doi: 10.11999/JEIT160329
Funds:

The National Natural Science Foundation of China (U1564201, 61601203, 61573171, 61403172), The China Postdoctoral Science Foundation (2014M561592, 2015T80511), The Key Research and Development Program of Jiangsu Province (BE2016149), The Natural Science Foundation of Jiangsu Province (BK20140555), The Six Talent Peaks Project of Jiangsu Province (2015-JXQC-012, 2014-DZXX-040)

  • Received Date: 2016-04-05
  • Rev Recd Date: 2016-08-22
  • Publish Date: 2017-02-19
  • The existed machine learning based road segmentation algorithms maintain obvious shortage that the detection effect decreases dramatically when the distribution of training samples and the scene target samples does not match. Focusing on this issue, a scene adaptive road segmentation algorithm based on Deep Convolutional Neural Network (DCNN) and auto encoder is proposed. Firstly, classic Slow Feature Analysis (SFA) and Gentle Boost based method is used to generate online samples whose label contain confidence value. After that, using the automatic feature extraction ability of DCNN and performing source-target scene feature similarity calculation with deep auto-encoder, a composite deep structure based scene adaptive classifier and its training method are designed. The experiment on KITTI dataset demonstrates that the proposed method outperforms the existed machine learning based road segmentation algorithms which upgrades the detection rate on average of around 4.5%.
  • loading
  • 余天洪, 王荣本, 顾柏园, 等. 基于机器视觉的智能车辆前方道路边界及车道标识识别方法综述[J]. 公路交通科技, 2006, 38(8): 139-142.
    YU Tianhong, WANG Rongben, GU Baiyuan, et al. Survey on the vision-based recognition methods of intelligent vehicle road boundaries and lane markings[J]. Journal of Highway and Transportation Research and Development, 2006, 38(8): 139-142.
    ZHOU H, KONG H, WEI L, et al. Efficient road detection and tracking for unmanned aerial vehicle[J]. IEEE Transactions on Intelligent Transportation Systems, 2015, 16(1): 297-309. doi: 10.1109/TITS.2014.2331353.
    SHIN B S, XU Z, and KLETTE R. Visual lane analysis and higher-order tasks: a concise review[J]. Machine Vision and Applications, 2014, 25(6): 1519-1547. doi: 10.1007/s00138- 014-0611-8.
    HILLEL A B, LERNER R, LEVI D, et al. Recent progress in road and lane detection: a survey[J]. Machine Vision and Applications, 2014, 25(3): 727-745. doi: 10.1007/s00138-011- 0404-2.
    PAZ L M, PINIES P, and NEWMAN P. A variational approach to online road and path segmentation with monocular vision[C]. 2015 IEEE International Conference on Robotics and Automation (ICRA), Seattle, USA, 2015: 1633-1639. doi: 10.1109/ICRA.2015.7139407.
    PASSANI M, YEBES J J, and BERGASA L M. Fast pixelwise road inference based on Uniformly Reweighted Belief Propagation[C]. 2015 IEEE Intelligent Vehicles Symposium (IV), Seoul, Korea, 2015: 519-524. doi: 10.1109/ IVS.2015.7225737.
    LADICKY L, STURGESS P, RUSSELL C, et al. Joint optimization for object class segmentation and dense stereo reconstruction[J]. International Journal of Computer Vision, 2012, 100(2): 122-133. doi: 10.1007/s11263-011-0489-0.
    STURGESS P, ALAHARI K, LADICKY L, et al. Combining appearance and structure from motion features for road scene understanding[C]. BMVC 2012-23rd British Machine Vision Conference, Guildford, UK, 2012: 1-10.
    KUHNL T, KUMMERT F, and FFITACH J. Monocular road segmentation using slow feature analysis[C]. 2011 IEEE Conference on Intelligent Vehicles Symposium (IV), Baden- Baden, Germany, 2011: 800-806. doi: 10.1109/IVS.2011. 5940416.
    肖良, 戴斌, 吴涛, 等. 基于字典学习与稀疏表示的非结构化道路分割方法[J]. 吉林大学学报(工学版), 2013, 43(S1): 384-388.
    XIAO Liang, DAI bin, WU Tao, et al. Unstructured road segmentation method based on dictionary learning and sparse representation[J]. Journal of Jilin University (Engineering and Technology Edition), 2013, 43(S1): 384-388.
    李骏扬, 金立左, 费树岷, 等. 基于多尺度特征表示的城市道路检测[J]. 电子与信息学报, 2014, 36(11): 2578-2585. doi: 10.3724/SP.J.1146.2014.00271.
    LI Junyang, JIN Lizuo, FEI Shumin, et al. Urban road detection based on multi-scale feature representation[J]. Journal of Electronics Information Technology, 2014, 36(11): 2578-2585. doi: 10.3724/SP.J.1146.2014.00271.
    ALVAREZ J M, LECUN Y, GEVERS T, et al. Semantic road segmentation via multi-scale ensembles of learned features[C]. 2012 Workshops and Demonstrations Computer Vision of ECCV, Firenze, Italy, 2012: 586-595. doi: 10.1007/978-3-642- 33868-7_58.
    WISKOTT L and SEJNOWAKI T J. Slow feature analysis: unsupervised learning of invariances[J]. Neural Computation, 2002, 14(4): 715-770. doi: 10.1162/089976602317318938.
    KRIZHEVAKY A, SUTAKEVER I, and HINTON G E.
    Imagenet classification with deep convolutional neural networks[C]. Advances in Neural Information Processing Systems. South Lake Tahoe, Nevada, USA, 2012: 1097-1105.
    BROSTOW G J, FAUQUEUR J, and CIPOLLA R. Semantic object classes in video: A high-definition ground truth database[J]. Pattern Recognition Letters, 2009, 30(2): 88-97. doi: 10.1016/j.patrec.2008.04.005.
    GEIGER A, LENZ P, and URTASUN R. Are we ready for autonomous driving? The kitti vision benchmark suite[C]. 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Providence, RI, USA, 2012: 3354-3361. doi: 10.1109/CVPR.2012.6248074.
    LVAREZ J M and LOPEZ A M. Road detection based on illuminant invariance[J]. IEEE Transactions on Intelligent Transportation Systems, 2011, 12(1): 184-193. doi: 10.1109/ TITS.2010.2076349.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2088) PDF downloads(943) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return