Advanced Search
Volume 39 Issue 2
Feb.  2017
Turn off MathJax
Article Contents
GUO Jichang, ZHANG Fan, WANG Nan. Image Classification Based on Fisher Constraint and Dictionary Pair[J]. Journal of Electronics & Information Technology, 2017, 39(2): 270-277. doi: 10.11999/JEIT160296
Citation: GUO Jichang, ZHANG Fan, WANG Nan. Image Classification Based on Fisher Constraint and Dictionary Pair[J]. Journal of Electronics & Information Technology, 2017, 39(2): 270-277. doi: 10.11999/JEIT160296

Image Classification Based on Fisher Constraint and Dictionary Pair

doi: 10.11999/JEIT160296
Funds:

The National 973 Program of China (2014CB340400), The Natural Science Foundation of Tianjin (15JCYBJC15500)

  • Received Date: 2016-03-31
  • Rev Recd Date: 2016-07-25
  • Publish Date: 2017-02-19
  • Classification method based on sparse representation has won wide attention because of its simplicity and effectiveness, while how to adaptively build the relationship between dictionary atoms and class labels is still an important open question, at the same time most of the sparse representation classification methods need to solve a norm constraint optimization problem, which increases the computational complexity in the classification task. To address this issue, this paper proposes a novel Fisher constraint dictionary pair learning method to jointly learn a structured synthesis dictionary and a structured analysis dictionary, then directly obtains the sparse coefficient matrix by analysis dictionary. In this paper, the Fisher criterion is used to encode the coefficients. Finally the new method is applied to image classification task, the experimental results show that the new method not only improves the accuracy of classification but also greatly reduces the computational complexity. Compared with the existing methods, the new method has better performance.
  • loading
  • RUBINSTEIN R, BRUCKSTEIN A, ELAD M, et al. Dictionaries for sparse representation modeling[J]. Proceedings of the IEEE, 2010, 98(6): 1045-1057. doi: 10.1109/JPROC.2010.2040551.
    GAO Shenghua, TSANG I, and MA Yi. Learning category- specific dictionary and shared dictionary for fine-grained image categorization[J]. IEEE Transactions on Image Processing, 2014, 23(2): 623-634. doi: 10.1109/TIP.2013. 2290593.
    宋相法, 焦李成. 基于稀疏编码和集成学习的多示例多标记图像分类方法[J]. 电子与信息学报, 2013, 35(3): 622-626. doi: 10.3724/SP.J.1146.2012.01218.
    SONG Xiangfa and JIAO Licheng. A multi-instance multi-label image classification method based on sparse coding and ensemble learning[J]. Journal of Electronics Information Technology, 2013, 35(3): 622-626. doi: 10.3724/ SP.J.1146.2012.01218.
    AHARON M, ELAD M, and BRUCKSTEIN A. K-SVD: an algorithm for designing of overcomplete dictionaries for sparse representation[J]. IEEE Transactions on Signal Processing, 2006, 54(11): 4311-4322. doi: 10.1109/TSP. 2006.881199.
    MA Long, WANG Chunheng, XIAO Baihua, et al. Sparse representation for face recognition based on discriminative low-rank dictionary learning[C]. IEEE Conference on Computer Vision and Pattern Recognition, Providence, USA, 2012: 2586-2593.
    RAMIREZ I, SPRECHMANN P, SAPIRO G, et al. Classification and clustering via dictionary learning with structured incoherence and shared features[C]. IEEE Conference on Computer Vision and Pattern Recognition, San Francisco, CA, USA, 2010: 3501-3508.
    NING Zhou and FAN Jianping. Jointly learning visually correlated dictionaries for large-scale visual recognition applications[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 36(4): 715-730. doi: 10.1109/ TPAMI.2013.189.
    JIANG Zhuolin, LIN Zhe, LARRY S, et al. Label consistent K-SVD: Learning a discriminative dictionary for recognition [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(11): 2651-2664. doi: 10.1109/TPAMI. 2013.88.
    YANG Meng, ZHANG Lei, FENG Xiangchu, et al. Sparse representation based fisher discrimination dictionary learning for image classication[J]. International Journal of Computer Vision, 2014, 109(3): 209-232. doi: 10.1007/s11263-014- 0722- 8.
    练秋生, 石保顺, 陈书贞. 字典学习模型、算法及其应用研究进展[J]. 自动化学报, 2015, 41(2): 240-260. doi: 10.16383/ j.aas.2015.c140252.
    LIAN Qiusheng, SHI Baoshun, and CHEN Shuzhen. Research advances on dictionary learning models, algorithms and applications[J]. Acta Automatica Sinica, 2015, 41(2): 240-260. doi: 10.16383/j.aas.2015.c140252.
    RUBINSTEIN R, PELEG T, and ELAD M. Analysis K-SVD: A dictionary-learning algorithm for the analysis sparse model[J]. IEEE Transactions on Signal Processing, 2013, 61(3): 661-677. doi: 10.1109/TSP.2012.2226445.
    CHEN Yunjin, RANFTL R, and POCK T. Insights into analysis operator learning: From patch-based sparse models to higher order MRFs[J]. IEEE Transactions on Image Processing, 2014, 23(3): 1060-1072. doi: 10.1109/TIP.2014. 2299065.
    GU Shuhang, ZHANG Lei, ZUO Wangmeng, et al. Projective dictionary pair learning for pattern classification[C]. Advances in Neural Information Processing System, Vancouver, BC, Canada, 2014, 1: 793-801.
    RAKOTOMAMONJY A. Applying alternating direction method of multipliers for constrained dictionary learning[J]. Neurocomputing, 2013, 61(3): 126-136. doi: 10.1016/j. neucom.2012.10.024.
    CAI Sijia, ZUO Wangmeng, ZHANG Lei, et al. Support vector guided dictionary learning[C]. European Conference on Computer Vision, Zurich, Switzerland, 2014, 8692: 624-639.
    GORSKI J, PFEUFFER F, and KLAMROTH K. Biconvex sets and optimization with biconvex functions: a survey and extensions[J]. Mathematical Methods of Operations Research, 2007, 66(3): 373-407. doi: 10.1007/s00186-007-0161-1.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1305) PDF downloads(527) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return