Advanced Search
Volume 39 Issue 2
Feb.  2017
Turn off MathJax
Article Contents
LIU Kai, JIANG Kun. Construction of Gaussian Integer Sequence Sets with Zero Correlation Zone Based on Interleaving Technique[J]. Journal of Electronics & Information Technology, 2017, 39(2): 328-334. doi: 10.11999/JEIT160276
Citation: LIU Kai, JIANG Kun. Construction of Gaussian Integer Sequence Sets with Zero Correlation Zone Based on Interleaving Technique[J]. Journal of Electronics & Information Technology, 2017, 39(2): 328-334. doi: 10.11999/JEIT160276

Construction of Gaussian Integer Sequence Sets with Zero Correlation Zone Based on Interleaving Technique

doi: 10.11999/JEIT160276
Funds:

The National Natural Science Foundation of China (61201263, 61501395), The Natural Science Foundation of Hebei Province (F2014203059)

  • Received Date: 2016-03-24
  • Rev Recd Date: 2016-08-16
  • Publish Date: 2017-02-19
  • A new method of construction of shift sequence sets is proposed, and based on these shift sequences, a new class of Gaussian integer sequence sets with period 2N which can choose Zero Correlation Zone (ZCZ) length flexibly is obtained by interleaving one perfect Gaussian integer sequence with period N. The new sequence sets whose parameters can reach or approach the Tang-Fan-Matsuji bound are optimal or almost optimal. Gaussian integer sequence sets with zero correlation zone can provide more address selection for high-speed quasi-synchronous spread spectrum system.
  • loading
  • HUBER Klaus. Codes over Gaussian integer[J]. IEEE Transactions on Information Theory, 1994, 40(1): 207-216. doi: 10.1109/18.272484.
    DENG Xinmin, FAN Pingzhi, and SUEHIRO N. Sequences with zero correlation over Gaussian integers[J]. Electronics Letters, 2000, 36(6): 552-553. doi: 10.1049/el:20000439.
    CHANG Chungyi, LI Ying, and HIRATA Jonathan. New 64-QAM golay complementary sequences[J]. IEEE Transactions on Information Theory, 2010, 56(6): 2479-2485. doi: 10.1109/TIT.2010.2043871.
    LI Chihpeng, WANG Senhung, and WANG Chinliang. Novel low-complexity SLM schemes for PAPR reduction in OFDM systems[J]. IEEE Transactions on Signal Processing, 2010, 58(5): 2916-2921. doi: 10.1109/TSP.2010.2043142.
    LUSINA P, SHAVGULIZDE S, and BOSSERT M. Space- time block factorisation codes over Gaussian integers[J]. IEE Proceedings: Communications, 2004, 151(5): 415-421. doi: 10.1049/ip-com:20040387.
    SUEHIRO N. A signal design without co-channel interference for approximately synchronized CDMA systems[J]. IEEE Journal on Selected Areas in Communications, 1994, 12(5): 837-841. doi: 10.1109/49.298057.
    ZHOU Zhengchun and TANG Xiaohu. A new class of sequences with zero or low correlation zone based on interleaving technique[J]. IEEE Transactions on Information Theory, 2008, 54(9): 4267-4273. doi: 10.1109/TIT.2008. 928256.
    李玉博, 许成谦. 交织法构造最佳或几乎最佳低零相关区序列集[J]. 电子与信息学报, 2011, 33(3): 549-554. doi: 10.3724/ SP.J.1146.2009.01615.
    LI Yubo and XU Chengqian. Construction of optimal or almost optimal sequence sets with zero or low correlation zone based on interleaving technique[J]. Journal of Electronics Information Technology, 2011, 33(3): 549-554. doi: 10.3724/SP.J.1146.2009.01615.
    李玉博, 许成谦. 交织法构造移位不等价的ZCZ/LCZ序列集[J]. 电子学报, 2011, 39(4): 796-802.
    LI Yubo and XU Chengqian. Construction of cyclically distinct ZCZ/LCZ sequence sets based on interleaving technique[J]. Acta Electronica Sinica, 2011, 39(4): 796-802.
    LI Yubo and XU Chengqian. Zero correlation zone sequence sets over the 8-QAM+Constellation[J]. IEEE Communications Letters, 2012, 16(11): 1844-1847. doi: 10.1109/LCOMM.2012.092112.121217.
    LI Yubo, LIU Kai, and XU Chengqian. Odd perfect sequences and sequence sets with zero odd correlation zone over the 8-QAM+Constellation[J]. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 2014, E97-A(1): 425-428. doi: 10.1587/transfun. E97.A.425.
    陈晓玉, 许成谦, 李玉博. 新的完备高斯整数序列的构造方法[J]. 电子与信息学报, 2014, 36(9): 2081-2085. doi: 10.3724/ SP.J.1146.2013.01697.
    CHEN Xiaoyu, XU Chengqian, and LI Yubo. New constructions of perfect Gaussian integer sequences[J]. Journal of Electronics Information Technology, 2014, 36(9): 2081-2085. doi: 10.3724/SP.J.1146.2013.01697.
    PENG Xiuping and XU Chengqian. New constructions of perfect Gaussian integer sequences of even length[J]. IEEE Communications Letters, 2014, 18(9): 1547-1550. doi: 10.1109/LCOMM.2014.2336840.
    LEE Chongdao, HUANG Yupei, and YAOTSU Chang. Perfect Gaussian integer sequences of odd period 2m-1[J]. IEEE Signal Processing Letters, 2015, 22(7): 881-885. doi: 10.1109/LSP.2014.2375313.
    PEI Soochang and CHANG Kuowei. Perfect Gaussian integer sequences of arbitrary length[J]. IEEE Signal Processing Letters, 2015, 22(8): 1040-1044. doi: 10.1109/LSP.2014. 2381642.
    TANG Xiaohu, FAN Pingzhi, and MATSUFUJI S. Lower bounds on correlation of spreading sequence set with low or zero correlation zone[J]. Electronics Letters, 2000, 36(6): 551-552. doi: 10.1049/el:20000462.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1252) PDF downloads(422) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return