Advanced Search
Volume 39 Issue 2
Feb.  2017
Turn off MathJax
Article Contents
ZHONG Xuanming, LI Junye, LIAO Cheng. Time Reversal Imaging Algorithm Based on Signal-subspaceVectors from the Spatial-frequency Decomposition[J]. Journal of Electronics & Information Technology, 2017, 39(2): 494-498. doi: 10.11999/JEIT160272
Citation: ZHONG Xuanming, LI Junye, LIAO Cheng. Time Reversal Imaging Algorithm Based on Signal-subspaceVectors from the Spatial-frequency Decomposition[J]. Journal of Electronics & Information Technology, 2017, 39(2): 494-498. doi: 10.11999/JEIT160272

Time Reversal Imaging Algorithm Based on Signal-subspaceVectors from the Spatial-frequency Decomposition

doi: 10.11999/JEIT160272
Funds:

The United Fund of National Natural Science Foundation of China and China Academy of Engineering Physics (U1330109)

  • Received Date: 2016-03-21
  • Rev Recd Date: 2016-08-17
  • Publish Date: 2017-02-19
  • Basing on the signal-subspace vectors from the spatial-frequency decomposition, a novel time-reversal imaging algorithm is proposed. Using the backscattered data recorded by the antenna array, a spatial-frequency multistatic matrix is set up. Singular value decomposition is applied to the matrix to obtain the signal-subspace vectors, which are employed to focus the targets imaging selectively. The imaging pseudo-spectrum based on the full backscattered data includes the contributions of multiple sub-vectors and can be viewed as the superposition of multiple images. The algorithm is statistically stable. The random phases, generated by the conventional time-reversal imaging method based on the spatial-spatial decomposition, do not arise in the algorithm. It has excellent capability to resist the noise interference and can accurately focus the multi-targets even when noise with 10 dB SNR is added to the measured data.
  • loading
  • YAVUZ M E and TEIXEIRA F L. A numerical study of time reversed UWB electromagnetic waves in continuous random media[J]. IEEE Antennas and Wireless Propagation Letters, 2005, 4(6): 43-46. doi: 10.1109/LAWP.2005.844117.
    DEVANEY A J. Time reversal imaging of obscured targets from multistatic data[J]. IEEE Transactions on Antennas Propagation, 2005, 53(5): 1600-1610. doi: 10.1109/TAP. 2005. 846723.
    范晶晶, 赵德双, 张浩然, 等. 基于时间反演的天线阵列激励分布确定方法研究[J]. 电子与信息学报, 2014, 36(9): 2238-2243. doi: 10.3724/SP.J.1146.2013.01737.
    FAN Jingjing, ZHAO Deshuang, ZHANG Haoran, et al. Array excitation determining method based on time reversal [J]. Journal of Electronics Information Technology, 2014, 36(9): 2238-2243. doi: 10.3724/SP.J.1146.2013.01737.
    PRADA C, MANNEVILE S, SPOLIANSKY D, et al. Decomposition of the time reversal operator: Detection and selective focusing on two scatterers[J]. Journal of the Acoustical Society of America, 1996, 99(4): 2067-2076.
    YAVUZ M E and TEIXEIRA F L. Full time-domain DORT for ultrawideband fields in dispersive, random inhomogeneous media[J]. IEEE Transactions on Antennas Propagation, 2006, 54(8): 2305-2315. doi: 10.1109/TAP.2006.879196.
    KAFAL M, COZZA A, and PICHON L. Locating multiple soft faults in wire networks using an alternative DORT implementation[J]. IEEE Transactions on Instrumentation Measurement, 2016, 65(2): 399-406. doi: 10.1109/TIM.2015. 2498559.
    GELAT P, HAAR G T, and SAFFARI N. An assessment of the DORT method on simple scatterers using boundary element modelling[J]. Physics in Medicine and Biology, 2015, 60(9): 3715-3730. doi: 10.1088/0031-9155/60/9/3715.
    LEV-ARI H and DEVANEY A J. The time reversal techniques reinterpreted: subspace-based signal processing for multistatic target location[C]. Sensor Array Multichannel Signal Processing Workshop, Cambridge, MA, USA, 2000: 509513. doi: 10.1109/SAM.2000.878061.
    YAVUZ M E and TEIXEIRA F L. On the sensitivity of time-reversal imaging techniques to model perturbations[J]. IEEE Transactions on Antennas Propagation, 2008, 56(3): 834-843. doi: 10.1109/TAP.2008.916933.
    ISLAM M S and KAABOUCH N. Evaluation of TR-MUSIC algorithm efficiency in detecting breast microcalcifications[C]. IEEE International Conference on Electro/Information Technology, DeKalb, IL, USA, 2015: 617-620. doi: 10.1109/EIT. 2015.7293406.
    He J and YUAN F G. Lamb waves based fast subwavelength imaging using a DORT-MUSIC algorithm[C]. American Institute of Physics Conference Series, Minneapolis, MN, USA, 2016,1706(1): 1103-1113.
    BORCEA L. Interferometric imaging and time reversal in random media[J]. Inverse Problem, 2003, 18(5): 1247-1279. doi: 10.1007/978-3-540-70529-1_157.
    SCHOLZ B. Towards virtual electrical breast biopsy: Space-frequency MUSIC for trans-admittance data[J]. IEEE Transactions on Medical Imaging, 2002, 21(6): 588-595. doi: 10.1109/TMI.2002.800609.
    PETROLIS R, RAMONAIT R, JANCIAUSKAS D, et al. Digital imaging of colon tissue: Method for evaluation of inflammation severity by spatial frequency features of the histological images[J]. Diagnostic Pathology, 2015, 10(1): 1-10. doi: 10.1186/s13000-015-0389-7.
    CUCCIA D J, BEVILACQUA F, DURKIN A J, et al. Modulated imaging: Quantitative analysis and tomography of turbid media in the spatial-frequency domain[J]. Optics Letters, 2005,30(11): 1354-1356. doi: 10.1364/OL.30.001354.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1184) PDF downloads(481) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return