Advanced Search
Volume 38 Issue 6
Jun.  2016
Turn off MathJax
Article Contents
XU Jin. Theory on Structure and Coloring of Maximal Planar Graphs (2) Domino Configurations and Extending-Contracting Operations[J]. Journal of Electronics & Information Technology, 2016, 38(6): 1271-1327. doi: 10.11999/JEIT160224
Citation: XU Jin. Theory on Structure and Coloring of Maximal Planar Graphs (2) Domino Configurations and Extending-Contracting Operations[J]. Journal of Electronics & Information Technology, 2016, 38(6): 1271-1327. doi: 10.11999/JEIT160224

Theory on Structure and Coloring of Maximal Planar Graphs (2) Domino Configurations and Extending-Contracting Operations

doi: 10.11999/JEIT160224
Funds:

The National 973 Program of China (2013CB 329600), The National Natural Science Foundation of China (61372191, 61472012, 61472433, 61572046, 61502012, 61572492, 61572153, 61402437)

  • Received Date: 2016-01-24
  • Rev Recd Date: 2016-04-21
  • Publish Date: 2016-06-19
  • The first paper of this series of articles revealed that Four-Color Conjecture is hopefully proved mathematically by investigating a special class of graphs, called the 4-chromatic-funnel, pseudo uniquely-4- colorable maximal planar graphs. To characterize the properties of such class of graphs, a novel technique, extending-contracting operation, is proposed which can be used to construct maximal planar graphs. The essence of this technique is to study a special kind of configurations, domino configurations. In this paper, a necessary and sufficient condition for a planar graph to be a domino configuration is constructively given, on the basis of which it is proposed to construct the ancestor-graphs and descendent-graphs of a graph. Particularly, it is proved that every maximal planar graph with ordern(9) and minimum degree4 has an ancestor-graph of order(n-2) or (n-3). Moreover, an approach is put forward to construct maximal planar graphs recursively, by which all maximal planar graphs with order 6~12 and minimum degree 4 are constructed. The extending-contracting operation constitutes the foundation in this series of articles.
  • loading
  • APPEL K and HAKEN W. The solution of the four-color map problem[J]. Science American, 1977, 237(4): 108-121. doi: 10.1038/scientificamerican1077-108.
    APPEL K and HAKEN W. Every planar map is four colorable, I: Discharging[J]. Illinois Journal of Mathematics, 1977, 21(3): 429-490.
    APPEL K, HAKEN W, and KOCH J. Every planar map is four-colorable, II: Reducibility[J]. Illinois Journal of Mathematics, 1977, 21(3): 491-567.
    EBERHARD V. Zur Morphologie Der Polyeder, Mit Vielen Figuren Im Text[M]. Leipzig: Benedictus Gotthelf Teubner, 1891: 14-68.
    王邵文. 构造极大平面图的圈加点法[J]. 北京机械工业学院学报, 2000, 15(1): 26-29.
    WANG Shaowen. Method of cycle add-point to construct a maximum plate graph[J]. Journal of Beijing Institute of Machinery, 2000, 15(1): 26-29.
    王邵文. 构造极大平面图的三种方法[J]. 北京机械工业学院学报, 1999, 14(1): 16-22.
    WANG Shaowen. Three methods to construct maximum plain graph[J]. Journal of Beijing Institute of Machinery, 1999, 14(1): 16-22.
    BARNETTE D. On generating planar graphs[J]. Discrete Mathematics, 1974, 7(3-4): 199-208. doi: 10.1016/0012- 365X(74)90035-1.
    BUTLER J W. A generation procedure for the simple 3-polytopes with cyclically 5-connected graphs[J]. Journal of the Mechanical Behavior of Biomedical Materials, 1974, 26(2): 138-146.
    BATAGELJ V. An inductive definition of the class of all triangulations with no vertex of degree smaller than 5[C]. Proceedings of the Fourth Yugoslav Seminar on Graph Theory, Novi Sad, 1983: 15-24.
    WAGNER K. Bemerkungen zum vierfarbenproblem[J]. Jahresbericht der Deutschen Mathematiker-Vereinigung, 1936, 46: 26-32.
    BRINKMANN G and MCKAY B D. Construction of planar triangulations with minimum degree 5[J]. Discrete Mathematics, 2005, 301: 147-163. doi: 10.1016/j.disc.2005.06. 019.
    MCKAY B D. Isomorph-free exhaustive generation[J]. Journal of Algorithms, 1998, 26(2): 306-324. doi: 10.1006 /jagm.1997.0898.
    AVIS D. Generating rooted triangulations without repetitions[J]. Algorithmica, 1996, 16(6): 618-632.
    NAKANO S. Efficient generation of triconnected plane triangulations[J]. Computational Geometry, 2004, 27(2): 109-122.
    BRINKMANN G and MCKAY B. Fast generation of planar graphs[J]. MATCH Communications in Mathematical and in Computer Chemistry, 2007, 58(58): 323-357.
    NEGAMI S and NAKAMOTO A. Diagonal transformations of graphs on closed surfaces[J]. Science Reports of the Yokohama National University. Section I. Mathematics, Physics, Chemistry, 1994, 40(40): 71-96.
    KOMURO H. The diagonal flips of triangulations on the sphere[J]. Yokohama Mathematical Journal, 1997, 44(2): 115-122.
    MORI R, NAKAMOTO A, and OTA K. Diagonal flips in Hamiltonian triangulations on the sphere[J]. Graphs and Combinatorics, 2003, 19(3): 413-418. doi:?10.1007/s00373- 002-0508-6.
    GAO Z C, URRUTIA J, and WANG J Y. Diagonal flips in labeled planar triangulations[J]. Graphs and Combinatorics, 2004, 17(4): 647-656. doi: ?10.1007/s003730170006.
    BOSE P, JANSENS D, VAN RENSSEN A, et al. Making triangulations 4-connected using flips[C]. Proceedings of the 23rd Canadian Conference on Computational Geometry, Toronto, 2014, 47(2): 187-197 doi: 10.1016/j.comgeo.2012. 10.012.
    许进. 极大平面图的结构与着色理论(1): 色多项式递推公式与四色猜想[J]. 电子与信息学报, 2016, 38(4): 763-779. doi: 10.11999/JEIT160072.
    XU Jin. Theory on the structure and coloring of maximal planar graphs(1): recursion formula of chromatic polynomial and four-color conjecture[J]. Journal of Electronics Information Technology, 2016, 38(4): 763-779. doi: 10.11999/ JEIT160072.
    BONDY J A and MURTY U S R. Graph Theory[M]. Springer, 2008: 5-46.
    XU Jin, LI Zepeng, and ZHU Enqiang. On purely tree- colorable planar graphs[J]. Information Processing Letters, 2016, 116(8): 532-536. doi: 10.1016/j.ipl.2016.03.011.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1887) PDF downloads(874) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return