Advanced Search
Volume 38 Issue 11
Dec.  2016
Turn off MathJax
Article Contents
CHEN Qiang, CHEN Xun, YU Fengqiong. Removal of Muscle Artifact from EEG Data Based on Independent Vector Analysis[J]. Journal of Electronics & Information Technology, 2016, 38(11): 2840-2847. doi: 10.11999/JEIT160209
Citation: CHEN Qiang, CHEN Xun, YU Fengqiong. Removal of Muscle Artifact from EEG Data Based on Independent Vector Analysis[J]. Journal of Electronics & Information Technology, 2016, 38(11): 2840-2847. doi: 10.11999/JEIT160209

Removal of Muscle Artifact from EEG Data Based on Independent Vector Analysis

doi: 10.11999/JEIT160209
Funds:

The National Natural Science Foundation of China (61501164, 81571760)

  • Received Date: 2016-03-07
  • Rev Recd Date: 2016-07-18
  • Publish Date: 2016-11-19
  • ElectroEncephaloGram (EEG) data are often contaminated by various electrophysiological artifacts. Among all these artifacts, removing the ones related to muscle activity is particularly challenging. In past studies, Independent Component Analysis (ICA) and Canonical Correlation Analysis (CCA), as Blind Source Separation (BSS) methods, are widely used. In this work, a new method for muscle artifact removal in EEG data using Independent Vector Analysis (IVA) is proposed. IVA utilizes both the higher-order and second-order statistics, so that it makes full use of non-Gaussianity and weak autocorrelation of the muscle artifact and has the advantages of both ICA and CCA. The proposed method is examined on a number of simulated data sets and is shown to have better performance than ICA and CCA. The proposed IVA method is able to largely suppress muscle activity and meanwhile well preserve the underlying EEG activity.
  • loading
  • URRESTARAZU E, IRIARTE J, ALEGRE M, et al. Independent component analysis removing artifacts in ictal recordings[J]. Epilepsia, 2004, 45(9) 1071-1078. doi: 10.1111/ j.0013-9580.2004.12104.x.
    MCMENAMIN B W, SHACKMAN A J, GREISCHAR L L, et al. Electromyogenic artifacts and electroencephalographic inferences revisited[J]. Neuroimage, 2011, 54(1): 4-9. doi: 10.1016/j.neuroimage.2010.07.057.
    闫铮, 高小榕, 应俊. 基于认知功能连接的信息流增益计算方法及应用[J]. 电子与信息学报, 2014, 36(11): 2756-2761. doi: 10.3724/SP.J.1146.2013.02019.
    YAN Z, GAO X R, and YING J. The flow gain methods and applications based on cognition functional connectivity[J]. Journal of Electronics Information Technology, 2014, 36(11): 2756-2761. doi: 10.3724/SP.J.1146.2013.02019.
    吕俊, 谢胜利, 章晋龙. 脑-机接口中基于ERS/ERD的自适应空间滤波算法[J]. 电子与信息学报, 2009, 31(2): 314-318.
    L J, XIE S L, and ZHANG J L. Adaptive spatial filter based on ERD/ERS for brain-computer interfaces[J]. Journal of Electronics Information Technology, 2009, 31(2): 314-318.
    吴明权, 李海峰, 马琳. 单通道脑电信号中眼电干扰的自动分离方法[J]. 电子与信息学报, 2015, 37(2): 367-372. doi: 10.11999/JEIT140602.
    WU M Q, LI H F, and MA L. Automatic electrooculogram separation method for single channel electroencephalogram signals[J]. Journal of Electronics Information Technology, 2015, 37(2): 367-372. doi: 10.11999/JEIT140602.
    DE CLERCQ W, VERGULT A, VANRUMSTE B, et al. Canonical analysis applied to remove muscle artifacts from the electroencephalogram[J]. IEEE Transactions on Biomedical Engineering, 2006, 53(12): 2583-2587. doi: 10. 1109/TBME.2006.879459.
    ALBERA L, KACHENOURA A, COMON P, et al. ICA- based EEG denoising: a comparative analysis of fifteen methods[J]. Bulletin of the Polish Academy of Sciences- Technical Sciences, 2012, 60(3): 407-418. doi: 10.2478/ v10175-012-0052-3.
    URIGUEN J A and GARCIA-ZAPIRAIN B. EEG artifact removal state-of-the-art and guidelines[J]. Journal of Neural Engineering, 2015, 12(3): 031001. doi: 10.1088/1741-2560 /12/3/031001.
    WINKER I, BRANDL S, HORN F, et al. Robust artifactual independent component classification for BCI practitioners [J]. Journal of Neural Engineering, 2014, 11(3): 035013. doi: 10.1088/1741-2560/11/3/035013.
    SHACKMAN A J, MCMENAMIN B W, Slagter H A, et al. Electromyogenic artifacts and electroencephalographic inferences[J]. Brain Topography, 2009, 22(1): 7-12. doi: 10.1007/s10548-009-0079-4.
    NAM H, YIM T G, HAN S K, et al. Independent component analysis of ictal EEG in medial temporal lobe epilepsy[J]. Epilepsia, 2002, 43(2): 160-164. doi: 10.1046/j.1528-1157. 2002.23501.x.
    GAO J F, ZHENG C X, and WANG P. Online removal of muscle artifact from electroencephalogram signals based on canonical correlation analysis[J]. Clinical EEG and Neuroscience, 2010, 41(1): 53-59. doi: 10.1177/155005941 004100111.
    MOWLA M R, NG S C, ZILANY M S A, et al. Artifacts-matched blind source separation and wavelet transform for multichannel EEG denoising[J]. Biomedical Signal Processing and Control, 2015, 22: 111-118. doi: 10.1016/j.bspc.2015.06.009.
    VERGULT A, DE CLERCQ W, PALMINI A, et al. Improving the interpretation of ictal scalp EEG: BSSCCA algorithm for muscle artifact removal[J]. Epilepsia, 2007, 48(5): 950-958. doi: 10.1111/j.1528-1167.2007.01031.x.
    VOS D M, RIES S, VANDEPERREN K, et al. Removal of muscle artifacts from EEG recordings of spoken language production[J]. Neuroinformatics, 2010, 8(2): 135-150. doi: 10.1007/s12021-010-9071-0.
    CHEN X, LIU A P, PENG H, et al. A preliminary study of muscular artifacts cancellation in single-channel EEG[J]. Sensors, 14(10): 18370-18389. doi: 10.3390/s141018370.
    ANDERSON M, ADALI T, and LI X L. Joint blind source separation with multivariate Gaussian model: Algorithms and performance analysis[J]. IEEE Transactions on Signal Processing, 2012, 60(4): 1672-1683. doi: 10.1109/TSP.2011. 2181836.
    ANDERSON M, FU G S, PHLYPO R, et al. Independent vector analysis: Identification conditions and performance bounds[J]. IEEE Transactions on Signal Processing, 2014, 62(17): 4399-4410. doi: 10.1109/TSP.2014.2333554.
    BELOUCHRANI A, ABED-MERAIM K, CARDOSO J F, et al. A blind source separation technique using second order statistics[J]. IEEE Transacations on Signal Processing, 1997, 45(2): 434-444. doi: 10.1109/78.554307.
    CARDOSO J F. High-order contrasts for independent component analysis[J]. Neural Computation, 1999, 11(1): 157-192. doi: 10.1162/089976699300016863.
    HOTELLING H. Relations between two sets of variates[J]. Biometrika, 1936, 28: 321-377. doi: 10.2307/2333955.
    LIN Z L, ZHANG C S, WU W, et al. Frequency recognition based on canonical correlation analysis for SSVEP-based BCIs[J]. IEEE Transactions on Biomedical Engineering, 2006, 53(12): 2610-2614. doi: 10.1109/TBME.2006.886577.
    GOLDBERGER A L, AMARAL L A N, GLASS L, et al. PhysioBank, PhysioToolkit, and PhysioNet: Components of a new research resource for complex physiologic signals[J]. Circulation, 2000, 101(23): e215-e220. doi: 10.1161/01.CIR. 101.23.e215.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1845) PDF downloads(853) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return