Advanced Search
Volume 38 Issue 12
Jan.  2017
Turn off MathJax
Article Contents
LI Hai, LIU Xinlong, JIANG Ting, WU Renbiao. Estimation of Clutter Degrees of Freedom in Airborne Forward-looking Radar via Random Matrix Theory and Minimum Description Length Criteria[J]. Journal of Electronics & Information Technology, 2016, 38(12): 3224-3229. doi: 10.11999/JEIT160132
Citation: LI Hai, LIU Xinlong, JIANG Ting, WU Renbiao. Estimation of Clutter Degrees of Freedom in Airborne Forward-looking Radar via Random Matrix Theory and Minimum Description Length Criteria[J]. Journal of Electronics & Information Technology, 2016, 38(12): 3224-3229. doi: 10.11999/JEIT160132

Estimation of Clutter Degrees of Freedom in Airborne Forward-looking Radar via Random Matrix Theory and Minimum Description Length Criteria

doi: 10.11999/JEIT160132
Funds:

The National Natural Science Foundation of China (61471365, 61571442, 61231017), The National Universitys Basic Research Foundation of China (3122015B002), The Foundation for Sky Young Scholars of Civil Aviation University of China

  • Received Date: 2016-01-29
  • Rev Recd Date: 2016-06-23
  • Publish Date: 2016-12-19
  • Owing to the heavy spread of eigenspectrum of the population covariance matrix under finite training samples condition, it is a challenge to estimate the clutter Degrees of Freedom (DoF) in airborne forward-looking radar. In this work, a method for estimation the clutters DoF is proposed. In order to estimate the clutters DoF, an idea from sources detection by Minimum Description Length (MDL) criterion is borrowed, and the parametric probability model is formed based on the eigenvalues statistical distribution properties from Random Matrix Theory (RMT). The proposed method is effective to estimate the clutters DoF under finite training samples condition, and the simulation results verify the efficiency of the proposed method.
  • loading
  • GUERCI J R. Space-Time Adaptive Processing for Radar [M]. Norwood, Artech House, 2014: 1-74.
    FERTIG L B. Analytical expressions for Space-Time Adaptive Processing (STAP) performance[J]. IEEE Transactions on Aerospace and Electronic Systems, 2015, 51(1): 42-53. doi: 10.1109/TAES.2014.130676.
    DEGURSE J F, SAVY L, and MARCOS S. Reduced-rank STAP for target detection in heterogeneous environments[J]. IEEE Transactions on Aerospace and Electronic Systems, 2014, 50(2): 1153-1162. doi: 10.1109/TAES.2014.120414.
    BRENNAN L E and STAUDAHER F M. Subclutter visibility demonstration[R]. Technical Report RL-TR-92-21, Adaptive Sensors Incorporated, 1992.
    同压龙, 王彤, 文才, 等. 一种稳健的机载非正侧视阵雷达杂波抑制方法[J]. 电子与信息学报, 2015, 37(5): 1044-1050. doi: 10.11999/JEIT141222.
    TONG Yalong, WANG Tong, WEN Cai, et al. A robust clutter suppression method for airborne non-sidelooking radar[J]. Journal of Electronics Information Technology, 2015, 37(5): 1044-1050. doi: 10.11999/JEIT141222.
    BAI Z D and SILVERSTEIN J W. Spectral Analysis of Large Dimensional Random matrices[M]. New York: Springer, 2010: 1-13.
    ZWINGELSTEIN C M and DEBBAH M. Random matrix theory based resource allocation in correlated MIMO systems with ARQ feedback[J]. IEEE Communications Letters, 2014, 18(5): 793-796. doi: 10.1109/LCOMM.2014.031414.140214.
    KRITCHMAN S and NADLER B. Non-parametric detection of the number of signals: hypothesis testing and random matrix theory[J]. IEEE Transactions on Signal Processing, 2009, 57(10): 3930-3941. doi: 10.1109/TSP.2009.2022897.
    VALLET P, LOUBATON P, and MESTRE X. Improved subspace estimation for multivariate observations of high dimension: the deterministic signals case[J]. IEEE Transactions on Information Theory, 2012, 58(2): 1043-1068.
    AHMED A, HU Y F, NORAS J M, et al. Random matrix theory based spectrum sensing for cognitive radio networks [C] Internet Technologies and Applications, Wrexham, 2015: 479-483.
    WAX M and KAILATH T. Detection of signals by information theoretic criteria[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1985, 33(2): 387-392. doi: 10.1109/TASSP.1985.1164557.
    BARRON A, RISSANEN J, and YU B. The minimum description length principle in coding and modeling[J]. IEEE Transactions on Information Theory, 1998, 44(6): 2743-2760. doi: 10.1109/18.720554.
    HUANG L and SO H C. Source enumeration via MDL criterion based on linear shrinkage estimation of noise subspace covariance matrix[J]. IEEE Transactions on Signal Processing, 2013, 61(19): 4806-4821. doi: 10.1109/TSP. 2013.2273198.
    HAIMOVICH A M and AYOUB T F. The eigencanceler: Space time adaptive radar by eigenanalysis methods[R]. New Jersey Inst of Tech Newark, 1999.
    MARCENKO V A and PASTUR L A. Distribution of eigenvalues for some sets of random matrices[J]. Sbornik: Mathematics, 1967, 1(4): 457-483.
    NADAKUDITI R R and EDELMAN A. Sample eigenvalue based detection of high-dimensional signals in white noise using relatively few samples[J]. IEEE Transactions on Signal Processing, 2008, 56(7): 2625-2638. doi: 10. 1109/TSP.2008. 917356.
    BAI Z D and SILVERSTEIN J W. CLT for linear spectral statistics of large-dimensional sample covariance matrices[J]. Annals of Probability, 2004, 32(1): 553-605.
    WARD J. Space-time adaptive processing for airborne radar [R]. Technical Report 1015, MIT Lincoln Laboratory, 1994.
    REED I S, MALLETT J D, and BRENNAN L E. Rapid convergence rate in adaptive arrays[J]. IEEE Transactions on Aerospace and Electronic Systems, 1974, 10(4): 853-863. doi: 10.1109/TAES.1974.307893.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1624) PDF downloads(353) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return