Advanced Search
Volume 38 Issue 11
Dec.  2016
Turn off MathJax
Article Contents
WU Zhengping, YANG Jie, CUI Xiaomeng, ZHANG Qingnian. Fast Object Tracking Based on L2-norm Minimization andCompressed Haar-like Features Matching[J]. Journal of Electronics & Information Technology, 2016, 38(11): 2803-2810. doi: 10.11999/JEIT160122
Citation: WU Zhengping, YANG Jie, CUI Xiaomeng, ZHANG Qingnian. Fast Object Tracking Based on L2-norm Minimization andCompressed Haar-like Features Matching[J]. Journal of Electronics & Information Technology, 2016, 38(11): 2803-2810. doi: 10.11999/JEIT160122

Fast Object Tracking Based on L2-norm Minimization andCompressed Haar-like Features Matching

doi: 10.11999/JEIT160122
Funds:

The National Natural Science Foundation of China (51479159)

  • Received Date: 2016-01-26
  • Rev Recd Date: 2016-06-08
  • Publish Date: 2016-11-19
  • Under the framework of the Bayesian inference, tracking methods based on PCA subspace and L2-norm minimization can deal with some complex appearance changes in the video scene successfully. However, they are prone to drifting or failure when the target object undergoes pose variation or rotation. To deal with this problem, a fast visual tracking method is proposed based on L2-norm minimization and compressed Haar-like features matching. The proposed method not only removes square templates, but also presents a simple but effective observation likelihood, and its robustness to pose variation and rotation is strengthened by Haar-like features matching. Compared with other popular method, the proposed method has stronger robustness to abnormal changes (e.g. heavy occlusion, drastic illumination change, abrupt motion, pose variation and rotation, etc). Furthermore, it runs fast with a speed of about 29 frames/s.
  • loading
  • COMANICIU D, RAMESH V, and MEER P. Real-time tracking of non-rigid objects using mean shift[C]. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Hilton Head, SC, USA, 2000: 142-149.
    KATJA N, ESTHER K M, and LUC V G. An adaptive color-based filter[J]. Image Vision Computing, 2003, 21(1): 99-110.
    ROSS D, LIM J, LIN R S, et al. Incremental learning for robust visual tracking[J]. International Journal of Computer Vision, 2008, 77(1-3): 125-141. doi: 10.1007/s11263- 007-0075-7.
    MEI Xue and LING Haibin. Robust visual tracking using minimization[C]. Proceedings of IEEE International Conference on Computer Vision, Kyoto, Japan, 2009: 1436-1443.
    MEI Xue, LING Haibin, WU Yi, et al. Minimum error bounded efficient tracker with occlusion detection[C]. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Colorado, USA, 2011: 1257-1264.
    BAO Chenglong, WU Yi, LING Haibin, et al. Real time robust L1 tracker using accelerated proximal gradient approach[C]. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Rhode Island, USA, 2012: 1830-1837.
    SHI Qinfeng, ERIKSSON A, VAN DEN HENGEL A, et al. Is face recognition really a compressive sensing problem?[C]. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Colorado, USA, 2011: 553-560.
    XIAO Ziyang, LU Huchuan, and WANG Dong. Object tracking with L2_RLS[C]. Proceedings of 21st International Conference on Pattern Recognition, Tsukuba, Japan, 2012: 681-684.
    XIAO Ziyang, LU Huchuan, and WANG Dong. L2-RLS based object tracking[J]. IEEE Transactions on Circuits Systems for Video Technology, 2014, 24(8): 1301-1309. doi: 10.11834/jig.20140105.
    齐美彬, 杨勋, 杨艳芳, 等. 基于L范数最小化的实时目标跟踪[J]. 中国图象图形学报, 2014, 19(1): 36-44. doi: 10.11834/jig.20140105.
    QI Meibin, YANG Xun, YANG Yanfang, et al. Real-time object tracking based on L-norm minimization[J]. Journal of Image and Graphics, 2014, 19(1): 36-44. doi: 10.11834/jig. 20140105.
    袁广林, 薛模根. L范数正则化鲁棒性编码视觉跟踪[J]. 电子与信息学报, 2014, 36(8): 1838-1843. doi: 10.3724/SP.J. 1146.2013.01416.
    YUAN Guanglin and XUE Mogen. Robust coding via L-norm regularization for visual tracking[J]. Journal of Electronics Information Technology, 2014, 36(8): 1838-1843. doi: 10.3724/SP.J.1146.2013.01416.
    WU Zhengping, YANG Jie, LIU Haibo, et al. A real-time object tracking via L2-RLS and compressed Haar-like features matching[J]. Multimedia Tools and Applications, 2016: 1-17. doi: 10.1007/s11042-016-3356-8.
    HONG S and HAN B. Visual tracking by sampling tree-structured graphical models[C]. Proceedings of European Conference on Computer Vision, Zurich, Switzerland, 2014: 1-16. [14] ZHUANG Bohan, LU Huchuan, XIAO Ziyang, et al. Visual tracking via discriminative sparse similarity map[J]. IEEE Transactions on Image Processing, 2014, 23(4): 1872-1881. doi: 10.1109/TIP.2014.2308414.
    ZHANG Kaihua, ZHANG Lei, and YANG Minghsuan. Real-time compressive tracking[C]. Proceedings of European Conference on Computer Vision, Florence, Italy, 2012: 864-877. [16] HENRIQUES J, CASEIRO R, MARTINS P, et al. High-speed tracking with kernelized correlation filters[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(3): 583-596. doi: 10.1109/TPAMI. 2014.2345390.
    LI Hanxin, LI Yi, and FATIH P. Deep track: learning discriminative feature representations by convolutional neural networks for visual tracking[C]. Proceedings of the British Machine Vision Conference, Nottingham, United Kingdom, 2014: 110-119.
    WU Zhengping, YANG Jie, LIU Haibo, et al. Robust compressive tracking under occlusion[C]. Proceedings of International Conference on Consumer Electronics, Berlin, Germany, 2015: 298-302.
    WU Yi, LIM J, and YANG Minghsuan. Online object tracking: a benchmark[C]. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Portland, ORegon, USA, 2013: 2411-2418.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1354) PDF downloads(488) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return